SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ericson Jogsten Ingrid 1980 ) srt2:(2020-2023)"

Sökning: WFRF:(Ericson Jogsten Ingrid 1980 ) > (2020-2023)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Björnsdotter, Maria, 1989-, et al. (författare)
  • Challenges in the analytical determination of ultra-short-chain perfluoroalkyl acids and implications for environmental and human health
  • 2020
  • Ingår i: Analytical and Bioanalytical Chemistry. - : Springer. - 1618-2642 .- 1618-2650. ; 412, s. 4785-4796
  • Forskningsöversikt (refereegranskat)abstract
    • Ultra-short-chain perfluoroalkyl acids have recently gained attention due to increasing environmental concentrations being observed. The most well-known ultra-short-chain perfluoroalkyl acid is trifluoroacetic acid (TFA) which has been studied since the 1990s. Potential sources and the fate of ultra-short-chain perfluoroalkyl acids other than TFA are not well studied and data reporting their environmental occurrence is scarce. The analytical determination of ultra-short-chain perfluoroalkyl acids is challenging due to their high polarity resulting in low retention using reversed-phase liquid chromatography. Furthermore, recent studies have reported varying extraction recoveries in water samples depending on the water matrix and different methods have been suggested to increase the extraction recovery. The present review gives an overview of the currently used analytical methods and summarizes the findings regarding potential analytical challenges. In addition, the current state of knowledge regarding TFA and other ultra-short-chain perfluoroalkyl acids, namely perfluoropropanoic acid, trifluoromethane sulfonic acid, perfluoroethane sulfonic acid, and perfluoropropane sulfonic acid‚ are reviewed. Both known and potential sources as well as environmental concentrations are summarized and discussed together with their fate and the environmental and human implications.
  •  
2.
  • Björnsdotter, Maria, 1989-, et al. (författare)
  • Levels and Seasonal Trends of C1-C4 Perfluoroalkyl Acids and the Discovery of Trifluoromethane Sulfonic Acid in Surface Snow in the Arctic
  • 2021
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 55:23, s. 15853-15861
  • Tidskriftsartikel (refereegranskat)abstract
    • C1-C4 perfluoroalkyl acids (PFAAs) are highly persistent chemicals that have been found in the environment. To date, much uncertainty still exists about their sources and fate. The importance of the atmospheric degradation of volatile precursors to C1-C4 PFAAs were investigated by studying their distribution and seasonal variation in remote Arctic locations. C1-C4 PFAAs were measured in surface snow on the island of Spitsbergen in the Norwegian Arctic during January-August 2019. Trifluoroacetic acid (TFA), perfluoropropanoic acid (PFPrA), perfluorobutanoic acid (PFBA), and trifluoromethane sulfonic acid (TFMS) were detected in most samples, including samples collected at locations presumably receiving PFAA input solely from long-range processes. The flux of TFA, PFPrA, PFBA, and TFMS per precipitation event was in the ranges of 22-1800, 0.79-16, 0.19-170, and 1.5-57 ng/m2, respectively. A positive correlation between the flux of TFA, PFPrA, and PFBA with downward short-wave solar radiation was observed. No correlation was observed between the flux of TFMS and solar radiation. These findings suggest that atmospheric transport of volatile precursors and their subsequent degradation plays a major role in the global distribution of C2-C4 perfluoroalkyl carboxylic acids and their consequential deposition in Arctic environments. The discovery of TFMS in surface snow at these remote Arctic locations suggests that TFMS is globally distributed. However, the transport mechanism to the Arctic environment remains unknown.
  •  
3.
  • Björnsdotter, Maria, 1989-, et al. (författare)
  • Mass Balance of Perfluoroalkyl Acids, Including Trifluoroacetic Acid, in a Freshwater Lake
  • 2022
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 56:1, s. 251-259
  • Tidskriftsartikel (refereegranskat)abstract
    • Perfluoroalkyl acids (PFAAs) are highly persistent chemicals that are ubiquitously found in the environment. The atmospheric degradation of precursor compounds has been identified as a source of PFAAs and might be an important pathway for contamination. Lake Vättern is one of Sweden's largest lakes and is an important source for drinking water. In addition to contamination via atmospheric deposition, the lake is subject to several potential contamination sources via surface water inflow. The relevance of different sources is not well understood. A mass balance of selected PFAAs was assembled based on measured concentrations in atmospheric deposition, surface water from streams that constitute the main inflow and outflow, and surface water in the lake. The largest input was seen for trifluoroacetic acid (150 kg/year), perfluoropropanoic acid (1.6 kg/year), perfluorobutanoic acid (4.0 kg/year), and perfluoro-octanoic acid (1.5 kg/year). Both atmospheric deposition and surface water inflow was found to be important input pathways. There was a positive correlation between the input of most perfluoroalkyl carboxylic acids via atmospheric deposition and global radiation and between the input via surface water inflow and catchment area. These findings highlight the importance of atmospheric oxidation of volatile precursor compounds for contamination in surface waters.
  •  
4.
  • Björnsdotter, Maria, 1989- (författare)
  • Ultra-short-chain perfluoroalkyl acids : Environmental occurrence, sources and distribution
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Ultra-short-chain perfluoroalkyl acids (PFAAs) is a group of highly fluorinated and very stable chemicals. Their small molecular structure in combination with the acidic functional group result in highly polar compounds and concern has been raised as these substances may threaten our drinking water supplies.The aim with this thesis was to study and assess the occurrence, sources, and distribution of ultra-short-chain PFAAs in the environment. The main objectives were to analyze ultra-short-chain PFAAs in surface water with different anthropogenic impact, in atmospheric deposition and surface snow at local and remote locations, and to examine the relevance of local and diffuse input pathways to Lake Vättern, Sweden.The results revealed that ultra-short-chain PFAAs are released to the environment from various sources such as firefighting training sites, landfills, and hazardous waste management facilities. Trifluoroacetic acid (TFA) and perfluoropropanoic acid (PFPrA) were detected in all atmospheric deposition samples and surface snow samples, including those collected at remote sites in the Arctic. Atmospheric oxidation of volatile precursors was found to play a major role in the global distribution of these as well as being the main input pathway to Lake Vättern. A total annual flux of 120–170 kg and 1.3–2.0 kg was observed for TFA and PFPrA, respectively.Trifluoromethane sulfonic acid (TFMS) was detected in most samples and was reported for the first time in atmospheric deposition and surface snow at local as well as remote locations. The discovery of TFMS at remote locations suggests that TFMS is globally distributed. Neither atmospheric degradation of volatile precursors, nor the long-range oceanic transport seem to be main sources of TFMS to the Arctic environment, and local sources seem to be of higher importance for TFMS input to Lake Vättern.
  •  
5.
  • Hartz, William F., et al. (författare)
  • Levels and distribution profiles of Per- and Polyfluoroalkyl Substances (PFAS) in a high Arctic Svalbard ice core
  • 2023
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 871
  • Tidskriftsartikel (refereegranskat)abstract
    • Per- and polyfluoroalkyl substances (PFAS) are a group of persistent organic contaminants of which some are toxic and bioaccumulative. Several PFAS can be formed from the atmospheric degradation of precursors such as fluorotelomer alcohols (FTOHs) as well as hydrochlorofluorocarbons (HFCs) and other ozone-depleting chlorofluorocarbon (CFC) replacement compounds. Svalbard ice cores have been shown to provide a valuable record of long-range atmospheric transport of contaminants to the Arctic. This study uses a 12.3 m ice core from the remote Lomonosovfonna ice cap on Svalbard to understand the atmospheric deposition of PFAS in the Arctic. A total of 45 PFAS were targeted, of which 26 were detected, using supercritical fluid chromatography (SFC) tandem mass spectrometry (MS/MS) and ultra-performance liquid chromatography (UPLC) MS/MS. C2 to C11 perfluoroalkyl carboxylic acids (PFCAs) were detected continuously in the ice core and their fluxes ranged from 2.5 to 8200 ng m-2 yr-1 (9.51-16,500 pg L-1). Trifluoroacetic acid (TFA) represented 71 % of the total mass of C2 - C11 PFCAs in the ice core and had increasing temporal trends in deposition. The distribution profile of PFCAs suggested that FTOHs were likely the atmospheric precursor to C8 - C11 PFCAs, whereas C2 - C6 PFCAs had alternative sources, such as HFCs and other CFC replacement compounds. Perfluorooctanesulfonic acid (PFOS) was also widely detected in 82 % of ice core subsections, and its isomer profile (81 % linear) indicated an electrochemical fluorination manufacturing source. Comparisons of PFAS concentrations with a marine aerosol proxy showed that marine aerosols were insignificant for the deposition of PFAS on Lomonosovfonna. Comparisons with a melt proxy showed that TFA and PFOS were mobile during meltwater percolation. This indicates that seasonal snowmelt and runoff from post-industrial accumulation on glaciers could be a significant seasonal source of PFAS to ecosystems in Arctic fjords.
  •  
6.
  • Mullin, L., et al. (författare)
  • Liquid chromatography-ion mobility-high resolution mass spectrometry for analysis of pollutants in indoor dust : Identification and predictive capabilities
  • 2020
  • Ingår i: Analytica Chimica Acta. - : Elsevier. - 0003-2670 .- 1873-4324. ; 1125, s. 29-40
  • Tidskriftsartikel (refereegranskat)abstract
    • Dust analysis provides a means to assess the degree of exposure of humans in an indoor environment to various contaminant classes such as flame retardants, pesticides and others. There is increasing interest in non-targeted acquisitions using high resolution mass spectrometry (HRMS) to better capture the contaminant profile. However, these studies are confronted with the challenge of assessing confidence in proposed identifications, particularly when authentic standards are not available. Here, we demonstrate the analysis of dust extracts representing various indoor environments (industrial e-waste processing and domestic) for high-abundance environmental contaminants using a data-independent LC-HRMS approach, incorporating ion mobility spectrometry (IMS) to provide additional characterization capability for the complex samples. Twenty-nine xenobiotic compound identifications were made based on both targeted and non-targeted processing approaches using accurate mass precursor and product ion measurement combined with an ion mobility derived collision-cross section (TWCCSN2) determination. Characterization of the repeatability of TWCCSN2 value measurements and their average relative error to compared authentic standards of 0.38% were consistent with various published studies and represent a robust measurement property. TWCCSN2 values were particularly useful in cases where confirmation after the initial dust analysis was performed using a different chromatographic method, due to the gas-phase measurement being unaffected by such changes. Observed compound TWCCSN2 values were then compared to predicted CCSN2 values obtained using two different machine-learning based predictive techniques. Results from one of the predictive programs indicates a promising avenue for use of these models for supporting compound identification in non-targeted analyses.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy