SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ericson Mia 1970) srt2:(2010-2014)"

Sökning: WFRF:(Ericson Mia 1970) > (2010-2014)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adermark, Louise, 1974, et al. (författare)
  • Ethanol-induced modulation of synaptic output from the dorsolateral striatum in rat is regulated by cholinergic interneurons.
  • 2011
  • Ingår i: Neurochemistry international. - : Elsevier BV. - 1872-9754 .- 0197-0186. ; 58:6, s. 693-9
  • Tidskriftsartikel (refereegranskat)abstract
    • The striatum is the largest input nucleus to the basal ganglia and associated with reward-based behavior. We assessed whether acute ethanol (EtOH) exposure could modulate synaptic efficacy in the dorsolateral striatum of juvenile Wistar rats. Since acute EtOH administration can both increase and decrease the probability of release of different neurotransmitters from synaptic terminals, we used field potential recordings to evaluate the net effect of EtOH on striatal output. We showed that 50mM EtOH but not 20, 80 or 100mM, depresses population spike (PS) amplitude in the dorsolateral striatum. This depression of synaptic output is insensitive to the N-methyl-d-aspartic acid (NMDA) receptor inhibitor DL-2-amino-5-phosphonopentanoic acid (AP-5, 50μM), but is blocked in slices treated with glycine receptor antagonists (strychnine, 1μM; PMBA, 50μM), nicotinic acetylcholine receptor antagonists (mecamylamine, 10μM; methyllycaconitine citrate (MLA), 40nM), or GABA(A) receptor inhibitors (picrotoxin, 100μM; bicuculline, 2μM, 20μM). A long-term facilitation of synaptic output, which is more pronounced in slices from adult Wistar rats, is detected following EtOH washout (50, 80, 100mM). This long-term enhancement of PS amplitude is regulated by cholinergic interneurons and completely blocked by mecamylamine, MLA or the non-selective muscarinic antagonist scopolamine (10μM). Administration of 100mM EtOH significantly depresses PS amplitude in scopolamine-treated slices, suggesting that EtOH exerts dual actions on striatal output that are initiated instantly upon drug wash-on. In conclusion, EtOH modulates striatal microcircuitry and neurotransmission in a way that could be of importance for understanding the intoxicating properties as well as the acute reward sensation of EtOH.
  •  
2.
  • Adermark, Louise, 1974, et al. (författare)
  • Implications for glycine receptors and astrocytes in ethanol-induced elevation of dopamine levels in the nucleus accumbens.
  • 2011
  • Ingår i: Addiction biology. - : Wiley. - 1369-1600 .- 1355-6215. ; 16:1, s. 43-54
  • Tidskriftsartikel (refereegranskat)abstract
    • ABSTRACT Elevated dopamine levels are believed to contribute to the rewarding sensation of ethanol (EtOH), and previous research has shown that strychnine-sensitive glycine receptors in the nucleus accumbens (nAc) are involved in regulating dopamine release and in mediating the reinforcing effects of EtOH. Furthermore, the osmoregulator taurine, which is released from astrocytes treated with EtOH, can act as an endogenous ligand for the glycine receptor, and increase extracellular dopamine levels. The aim of this study was to address if EtOH-induced swelling of astrocytes could contribute to elevated dopamine levels by increasing the extracellular concentration of taurine. Cell swelling was estimated by optical sectioning of fluorescently labeled astrocytes in primary cultures from rat, and showed that EtOH (25-150 mM) increased astrocyte cell volumes in a concentration- and ion-dependent manner. The EtOH-induced cell swelling was inhibited in cultures treated with the Na(+)/K(+)/2Cl(-) cotransporter blocker furosemide (1 mM), Na(+)/K(+)-ATPase inhibitor ouabain (0.1 mM), potassium channel inhibitor BaCl(2) (50 microM) and in cultures containing low extracellular sodium concentration (3 mM). In vivo microdialysis performed in the nAc of awake and freely moving rats showed that local treatment with EtOH enhanced the concentrations of dopamine and taurine in the microdialysate, while glycine and beta-alanine levels were not significantly modulated. EtOH-induced dopamine release was antagonized by local treatment with the glycine receptor antagonist strychnine (20 microM) or furosemide (100 microM or 1 mM). Furosemide also prevented EtOH-induced taurine release in the nAc. In conclusion, our data suggest that extracellular concentrations of dopamine and taurine are interconnected and that swelling of astrocytes contributes to the acute rewarding sensation of EtOH.
  •  
3.
  • Adermark, Louise, 1974, et al. (författare)
  • Intermittent ethanol consumption depresses endocannabinoid-signaling in the dorsolateral striatum of rat.
  • 2011
  • Ingår i: Neuropharmacology. - : Elsevier BV. - 1873-7064 .- 0028-3908. ; https://gup.ub.gu.se/publications/sho61:7, s. 1160-1165
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent research suggests that adaptations elicited by drugs of abuse share common features with traditional learning models, and that drugs of abuse cause long-term changes in behavior by altering synaptic function and plasticity. In this study, endocannabinoid (eCB) signaling in the dorsolateral striatum, a brain region vital for habit formation, was evaluated in acutely isolated brain slices from ethanol (EtOH)-consuming rats and control rats. EtOH-consuming rats had free access to a 20% EtOH solution for three 24hour sessions a week during seven weeks and consumed an average of 3.4g/kg per session. eCB-mediated long-lasting disinhibition (DLL) of population spike (PS) amplitude induced by moderate frequency stimulation was impaired in EtOH-consuming rats, and was not restored by the muscarinic receptor antagonist scopolamine (10μM). The lack of DLL could be linked to a reduced GABA(A) receptor tone, since bicuculline-mediated disinhibition of striatal output was significantly reduced in slices from EtOH-consuming rats. However, eCB signaling induced by high frequency stimulation (HFS) was also impaired in slices from EtOH-consuming rats and isolated control rats. Activation of presynaptic cannabinoid 1 receptors (CB1R) with WIN55,212-2 (250nM, 1μM) significantly modulated PS amplitude in slices from age-matched control rats while slices from EtOH-consuming rats remained unaffected, indicating that eCB signaling is inhibited at a level that is downstream from CB1R activation. Intermittent alcohol intake for seven weeks might thus be sufficient to modulate a presynaptic mechanism that needs to be synergized with CB1R activation for induction of long-term depression (LTD). In conclusion, alcohol consumption inhibits striatal eCB signaling in a way that could be of importance for understanding the neurological underpinnings of addictive behavior.
  •  
4.
  • Adermark, Louise, 1974, et al. (författare)
  • Subregion-Specific Modulation of Excitatory Input and Dopaminergic Output in the Striatum by Tonically Activated Glycine and GABA(A) Receptors.
  • 2011
  • Ingår i: Frontiers in systems neuroscience. - : Frontiers Media SA. - 1662-5137. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • The flow of cortical information through the basal ganglia is a complex spatiotemporal pattern of increased and decreased firing. The striatum is the biggest input nucleus to the basal ganglia and the aim of this study was to assess the role of inhibitory GABA(A) and glycine receptors in regulating synaptic activity in the dorsolateral striatum (DLS) and ventral striatum (nucleus accumbens, nAc). Local field potential recordings from coronal brain slices of juvenile and adult Wistar rats showed that GABA(A) receptors and strychnine-sensitive glycine receptors are tonically activated and inhibit excitatory input to the DLS and to the nAc. Strychnine-induced disinhibition of glutamatergic transmission was insensitive to the muscarinic receptor inhibitor scopolamine (10μM), inhibited by the nicotinic acetylcholine receptor antagonist mecamylamine (10μM) and blocked by GABA(A) receptor inhibitors, suggesting that tonically activated glycine receptors depress excitatory input to the striatum through modulation of cholinergic and GABAergic neurotransmission. As an end-product example of striatal GABAergic output in vivo we measured dopamine release in the DLS and nAc by microdialysis in the awake and freely moving rat. Reversed dialysis of bicuculline (50μM in perfusate) only increased extrasynaptic dopamine levels in the nAc, while strychnine administered locally (200μM in perfusate) decreased dopamine output by 60% in both the DLS and nAc. Our data suggest that GABA(A) and glycine receptors are tonically activated and modulate striatal transmission in a partially subregion-specific manner.
  •  
5.
  • Chau, Pei Pei, 1981, et al. (författare)
  • The mGluR5 antagonist MPEP elevates accumbal dopamine and glycine levels; interaction with strychnine-sensitive glycine receptors.
  • 2011
  • Ingår i: Addiction biology. - : Wiley. - 1369-1600 .- 1355-6215.
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies have indicated that the metabotropic glutamate receptor 5 (mGluR5) antagonist 6-methyl-2-(phenylethynyl)-pyridine (MPEP) decreases ethanol self-administration, and the same receptor type was also suggested to be involved in the mechanism of action of the anti-craving substance acamprosate. Our previous research suggested that glycine receptors (GlyRs) in the nucleus accumbens (nAc) play a major part in mediating the dopamine-elevating properties of ethanol and are highly involved in the ethanol intake-reducing effect of acamprosate. The aim of this study was to examine if modulation of nAc dopamine via mGluR5 antagonism or GlyR agonism is a linked or separated phenomena. The extracellular levels of dopamine as well as of the GlyR ligands, glycine, taurine and β-alanine were measured in the nAc by means of microdialysis after local perfusion of MPEP (100 or 500µM) with or without pre-treatment with strychnine. MPEP increased dopamine levels, an effect that was blocked by pre-treatment with strychnine. In addition, the higher MPEP concentration increased glycine output, whereas no alterations of taurine or β-alanine were observed. These results indicate a relationship between the glutamatergic and glycinergic transmitter systems in regulating dopamine output, possibly via alteration of extracellular glycine levels. Taken together with our previous data demonstrating the importance of accumbal GlyRs both in ethanol-induced elevation of nAc dopamine and in ethanol consumption, it is plausible that the effects of MPEP treatment, on dopamine output and on ethanol intake, may be mediated via interaction with the same neuronal circuitry that previously has been demonstrated for ethanol, taurine and acamprosate.
  •  
6.
  • Clarke, Rhona B. C., et al. (författare)
  • Increase in Nucleus Accumbens Dopamine Levels Following Local Ethanol Administration Is Not Mediated by Acetaldehyde
  • 2014
  • Ingår i: Alcohol and Alcoholism. - : Oxford University Press (OUP). - 0735-0414 .- 1464-3502. ; 49:5, s. 498-504
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: Ethanol (EtOH) activates the mesolimbic dopamine system and increases dopamine levels in the nucleus accumbens (nAc), which is believed to underlie the rewarding effects of alcohol. Accumulating evidence now implicates that acetaldehyde, the first metabolite of EtOH, may play an important role in mediating some of the rewarding properties of its parent compound. The objective of this study was to investigate if the increase in accumbal dopamine output observed when administering EtOH locally in the nAc by reversed microdialysis is mediated by acetaldehyde. Methods: Acetaldehyde (1, 10, 100 or 200 mu M) or EtOH (300 mM) was administered via reversed microdialysis in the nAc of male Wistar rats. In a separate experiment, animals were administered EtOH (300 mM) in the nAc, following pre-treatment with the acetaldehyde-sequestering agent D-penicillamine (50 mg/kg injected intraperitoneally 60 min before drug challenge). Microdialysates from the nAc were collected every 20 min and dopamine content was quantified using high-performance liquid chromatography. Results: Acetaldehyde administered in the nAc did not influence accumbal dopamine levels at any of the concentrations applied, whereas EtOH induced a significant increase in accumbal dopamine. The dopamine-elevating properties of EtOH were not attenuated by pre-treatment with D-penicillamine. Conclusion: The current results show that EtOH administered in the nAc induces an elevation in accumbal dopamine levels, which is not mimicked by acetaldehyde alone, nor is it influenced by acetaldehyde sequestering. This would suggest that the increase in accumbal dopamine following nAc EtOH administration is not mediated by acetaldehyde.
  •  
7.
  • Ericson, Mia, 1970, et al. (författare)
  • Behavioral sensitization to nicotine in female and male rats.
  • 2010
  • Ingår i: Journal of neural transmission (Vienna, Austria : 1996). - : Springer Science and Business Media LLC. - 1435-1463 .- 0300-9564. ; 117:9, s. 1033-9
  • Tidskriftsartikel (refereegranskat)abstract
    • Behavioral sensitization to nicotine has been studied in both male and female rats, but studies up to now have been difficult to compare due to different experimental conditions. Including both sexes in scientific research is of great importance since clinical data indicate gender differences both in response to nicotine and in ability for smoking cessation. The aim of the present study was to compare behavioral sensitization and body-weight gain to two chronic doses of nicotine in female and male Wistar rats housed in unisex conditions. The rats received daily subcutaneous injections of vehicle or nicotine (0.2 or 0.4 mg/kg, free base) and locomotor activity was measured at days 1, 7, 14, 21, 28 and 37 after administration of vehicle or nicotine (0.4 mg/kg). On day 45, all rats received an injection of nicotine. Body weights were monitored throughout the experiment. All rats receiving nicotine developed a sensitized response to the locomotor stimulatory effects of the drug. Male and female rats displayed a similar effect on horizontal and rearing activity after treatment with nicotine. Acute nicotine treatment induced a depressed rearing activity in male, but not female, rats; however, after chronic treatment the rats displayed a sensitized response. Furthermore, females treated with nicotine gained less weight compared to controls, while no such effect was seen in males. In conclusion, the present study does not support findings suggesting sex differences in development of behavioral sensitization to nicotine, while it demonstrates differences in nicotine-induced effects on weight gain in female and male rats.
  •  
8.
  • Ericson, Mia, 1970, et al. (författare)
  • beta-alanine elevates dopamine levels in the rat nucleus accumbens: antagonism by strychnine.
  • 2010
  • Ingår i: Amino acids. - : Springer Science and Business Media LLC. - 1438-2199 .- 0939-4451. ; 38:4, s. 1051-1055
  • Tidskriftsartikel (refereegranskat)abstract
    • Glycine receptors (GlyRs) in the nucleus accumbens (nAc) have recently been suggested to be involved in the reinforcing and dopamine-elevating properties of ethanol via a neuronal circuitry involving the VTA. Apart from ethanol, both glycine and taurine have the ability to modulate dopamine output via GlyRs in the same brain region. In the present study, we wanted to explore whether yet another endogenous ligand for the GlyR, beta-alanine, had similar effects. To this end, we monitored dopamine in the nAc by means of in vivo microdialysis and found that local perfusion of beta-alanine increased dopamine output. In line with previous observations investigating ethanol, glycine and taurine, the competitive GlyR antagonist strychnine completely blocked the dopamine elevation. The present results suggest that beta-alanine has the ability to modulate dopamine levels in the nAc via strychnine-sensitive GlyRs, and are consistent with previous studies suggesting the importance of this receptor for modulating dopamine output.
  •  
9.
  • Ericson, Mia, 1970, et al. (författare)
  • Rising taurine and ethanol concentrations in nucleus accumbens interact to produce dopamine release after ethanol administration.
  • 2011
  • Ingår i: Addiction biology. - : Wiley. - 1369-1600 .- 1355-6215. ; 16:3, s. 377-385
  • Tidskriftsartikel (refereegranskat)abstract
    • We have previously demonstrated that glycine receptors in the nucleus accumbens (nAc) are involved in modulating both basal and ethanol-induced dopamine output in the same brain region. Ethanol is known to induce a release of both taurine and dopamine in the nAc, but the relationship between these two neuromodulators has not been investigated thoroughly. In vivo microdialysis was used to measure the effects of systemic ethanol diluted in isotonic (0.9% NaCl) or hypertonic (3.6% NaCl) saline on accumbal taurine and dopamine levels. We found that ethanol given in a hypertonic solution, contrary to an isotonic solution, failed to increase concentrations both of taurine and dopamine in the nAc. However, a modest, non-dopamine elevating concentration of taurine in the nAc disclosed a dopamine-elevating effect of systemic ethanol also when given in a hypertonic solution. In a second experiment, we investigated the effects of ethanol on taurine and dopamine in normal rats and rats with decreased levels of endogenous taurine. Lowering the level of taurine, approximately 40% by adding 5% β-alanine in the drinking water, did not influence taurine or dopamine output over time. We conclude that the elevations of taurine and dopamine in the nAc are closely related, and that in order for ethanol to induce dopamine release, a simultaneous increase of extracellular taurine levels in the nAc is required. These data also provide support for the notion that the nAc is the primary target for ethanol in its dopamine-activating effect after systemic administration.
  •  
10.
  • Ericson, Mia, 1970, et al. (författare)
  • Rising taurine and ethanol concentrations in nucleus accumbens interact to produce the dopamine-activating effects of alcohol
  • 2013
  • Ingår i: Advances in Experimental Medicine and Biology. - New York, NY : Springer New York. - 0065-2598. ; 775, s. 215-223
  • Tidskriftsartikel (refereegranskat)abstract
    • Alcohol misuse and addiction is a worldwide problem causing enormous individual suffering as well as financial costs for the society. To develop pharmacological means to reduce suffering, we need to understand the mechanisms underlying the effects of ethanol in the brain. Ethanol is known to increase extracellular levels of both dopamine and taurine in the nucleus accumbens (nAc), a part of the brain reward system, but the two events have not been connected. In previous studies we have demonstrated that glycine receptors in the nAc are involved in modulating both basal- and ethanol-induced dopamine output in the same brain region. By means of in vivo microdialysis in freely moving rats we here demonstrate that the endogenous glycine receptor ligand taurine mimics ethanol in activating the brain reward system. Furthermore, administration of systemic ethanol diluted in an isotonic (0.9% NaCl) or hypertonic (3.6% NaCl) saline solution was investigated with respect to extracellular levels of taurine and dopamine in the nAc. We found that ethanol given in a hypertonic solution, contrary to an isotonic solution, failed to increase concentrations of both taurine and dopamine in the nAc. However, a modest, non-dopamine elevating concentration of taurine in the nAc disclosed a dopamine elevating effect of systemic ethanol also when given in a hypertonic solution. We conclude that the elevations of taurine and dopamine in the nAc are closely related and that in order for ethanol to induce dopamine release, a simultaneous increase of extracellular taurine levels in the nAc is required. These data also provide support for the notion that the nAc is the primary target for ethanol in its dopamineactivating effect after systemic administration and that taurine is a prominent participant in activating the brain reward system. © Springer Science+Business Media New York 2013.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy