SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Erisman J. W.) srt2:(2009)"

Sökning: WFRF:(Erisman J. W.) > (2009)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fowler, D., et al. (författare)
  • Atmospheric composition change : Ecosystems-Atmosphere interactions
  • 2009
  • Ingår i: Atmospheric Environment. - : Elsevier BV. - 1352-2310 .- 1873-2844. ; 43:33, s. 5193-5267
  • Forskningsöversikt (refereegranskat)abstract
    • Ecosystems and the atmosphere: This review describes the state of understanding the processes involved in the exchange of trace gases and aerosols between the earth's surface and the atmosphere. The gases covered include NO, NO2, HONO, HNO3, NH3, SO2, DMS, Biogenic VOC, O-3, CH4, N2O and particles in the size range 1 nm-10 mu m including organic and inorganic chemical species. The main focus of the review is on the exchange between terrestrial ecosystems, both managed and natural and the atmosphere, although some new developments in ocean-atmosphere exchange are included. The material presented is biased towards the last decade, but includes earlier work, where more recent developments are limited or absent. New methodologies and instrumentation have enabled, if not driven technical advances in measurement. These developments have advanced the process understanding and upscaling of fluxes, especially for particles, VOC and NH3. Examples of these applications include mass spectrometric methods, such as Aerosol Mass Spectrometry (AMS) adapted for field measurement of atmosphere-surface fluxes using micrometeorological methods for chemically resolved aerosols. Also briefly described are some advances in theory and techniques in micrometeorology. For some of the compounds there have been paradigm shifts in approach and application of both techniques and assessment. These include flux measurements over marine surfaces and urban areas using micrometeorological methods and the up-scaling of flux measurements using aircraft and satellite remote sensing. The application of a flux-based approach in assessment of O-3 effects on vegetation at regional scales is an important policy linked development secured through improved quantification of fluxes. The coupling of monitoring, modelling and intensive flux measurement at a continental scale within the NitroEurope network represents a quantum development in the application of research teams to address the underpinning science of reactive nitrogen in the cycling between ecosystems and the atmosphere in Europe. Some important developments of the science have been applied to assist in addressing policy questions, which have been the main driver of the research agenda, while other developments in understanding have not been applied to their wider field especially in chemistry-transport models through deficiencies in obtaining appropriate data to enable application or inertia within the modelling community. The paper identifies applications, gaps and research questions that have remained intractable at least since 2000 within the specialized sections of the paper, and where possible these have been focussed on research questions for the coming decade. 
  •  
2.
  • Sutton, M. A., et al. (författare)
  • Dynamics of ammonia exchange with cut grassland : Strategy and implementation of the GRAMINAE Integrated Experiment
  • 2009
  • Ingår i: Biogeosciences. - : Copernicus Publications (on behalf of the European Geosciences Union). - 1726-4170 .- 1726-4189. ; 6:3, s. 309-331
  • Tidskriftsartikel (refereegranskat)abstract
    • A major international experiment on ammonia (NH3) biosphere-atmosphere exchange was conducted over intensively managed grassland at Braunschweig, Germany. The experimental strategy was developed to allow an integrated analysis of different features of NH3 exchange including: a) quantification of nearby emissions and advection effects, b) estimation of net NH3 fluxes with the canopy by a range of micrometeorological measurements, c) analysis of the sources and sinks of NH3 within the plant canopy, including soils and bioassay measurements, d) comparison of the effects of grassland management options on NH3 fluxes and e) assessment of the interactions of NH3 fluxes with aerosol exchange processes. Additional technical objectives included the inter-comparison of different estimates of sensible and latent heat fluxes, as well as continuous-gradient and Relaxed Eddy Accumulation (REA) systems for NH3 fluxes. The prior analysis established the spatial and temporal design of the experiment, allowing significant synergy between these objectives. The measurements were made at 7 measurement locations, thereby quantifying horizontal and vertical profiles, and covered three phases: a) tall grass canopy prior to cutting (7 days), b) short grass after cutting (7 days) and c) re-growing sward following fertilization with ammonium nitrate (10 days). The sequential management treatments allowed comparison of sources-sinks, advection and aerosol interactions under a wide range of NH3 fluxes. This paper describes the experimental strategy and reports the grassland management history, soils, environmental conditions and air chemistry during the experiment, finally summarizing how the results are coordinated in the accompanying series of papers.
  •  
3.
  • Burkhardt, J., et al. (författare)
  • Modelling the dynamic chemical interactions of atmospheric ammonia with leaf surface wetness in a managed grassland canopy
  • 2009
  • Ingår i: Biogeosciences. - Göttingen : Copernicus Publications. - 1726-4170 .- 1726-4189. ; 6:1, s. 67-84
  • Tidskriftsartikel (refereegranskat)abstract
    • Ammonia exchange fluxes between grassland and the atmosphere were modelled on the basis of stomatal compensation points and leaf surface chemistry, and compared with measured fluxes during the GRAMINAE intensive measurement campaign in spring 2000 near Braunschweig, Germany. Leaf wetness and dew chemistry in grassland were measured together with ammonia fluxes and apoplastic NH4+ and H+ concentration, and the data were used to apply, validate and further develop an existing model of leaf surface chemistry and ammonia exchange. Foliar leaf wetness which is known to affect ammonia fluxes may be persistent after the end of rainfall, or sustained by recondensation of water vapour originating from the ground or leaf transpiration, so measured leaf wetness values were included in the model. pH and ammonium concentrations of dew samples collected from grass were compared to modelled values.The measurement period was divided into three phases: a relatively wet phase followed by a dry phase in the first week before the grass was cut, and a second drier week after the cut. While the first two phases were mainly characterised by ammonia deposition and occasional short emission events, regular events of strong ammonia emissions were observed during the post-cut period. A single-layer resistance model including dynamic cuticular and stomatal exchange could describe the fluxes well before the cut, but after the cut the stomatal compensation points needed to numerically match measured fluxes were much higher than the ones measured by bioassays, suggesting another source of ammonia fluxes. Considerably better agreement both in the direction and the size range of fluxes were obtained when a second layer was introduced into the model, to account for the large additional ammonia source inherent in the leaf litter at the bottom of the grass canopy. Therefore, this was found to be a useful extension of the mechanistic dynamic chemistry model by keeping the advantage of requiring relatively little site-specific information.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy