SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Espada G.) srt2:(2020-2023)"

Sökning: WFRF:(Espada G.) > (2020-2023)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kollhoff, A., et al. (författare)
  • The first widespread solar energetic particle event observed by Solar Orbiter on 2020 November 29
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. On 2020 November 29, the first widespread solar energetic particle (SEP) event of solar cycle 25 was observed at four widely separated locations in the inner (≲1 AU) heliosphere. Relativistic electrons as well as protons with energies > 50 MeV were observed by Solar Orbiter (SolO), Parker Solar Probe, the Solar Terrestrial Relations Observatory (STEREO)-A and multiple near-Earth spacecraft. The SEP event was associated with an M4.4 class X-ray flare and accompanied by a coronal mass ejection and an extreme ultraviolet (EUV) wave as well as a type II radio burst and multiple type III radio bursts.Aims. We present multi-spacecraft particle observations and place them in context with source observations from remote sensing instruments and discuss how such observations may further our understanding of particle acceleration and transport in this widespread event.Methods. Velocity dispersion analysis (VDA) and time shift analysis (TSA) were used to infer the particle release times at the Sun. Solar wind plasma and magnetic field measurements were examined to identify structures that influence the properties of the energetic particles such as their intensity. Pitch angle distributions and first-order anisotropies were analyzed in order to characterize the particle propagation in the interplanetary medium.Results. We find that during the 2020 November 29 SEP event, particles spread over more than 230° in longitude close to 1 AU. The particle onset delays observed at the different spacecraft are larger as the flare–footpoint angle increases and are consistent with those from previous STEREO observations. Comparing the timing when the EUV wave intersects the estimated magnetic footpoints of each spacecraft with particle release times from TSA and VDA, we conclude that a simple scenario where the particle release is only determined by the EUV wave propagation is unlikely for this event. Observations of anisotropic particle distributions at SolO, Wind, and STEREO-A do not rule out that particles are injected over a wide longitudinal range close to the Sun. However, the low values of the first-order anisotropy observed by near-Earth spacecraft suggest that diffusive propagation processes are likely involved.
  •  
2.
  • Allen, R. C., et al. (författare)
  • Energetic ions in the Venusian system : Insights from the first Solar Orbiter flyby
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • The Solar Orbiter flyby of Venus on 27 December 2020 allowed for an opportunity to measure the suprathermal to energetic ions in the Venusian system over a large range of radial distances to better understand the acceleration processes within the system and provide a characterization of galactic cosmic rays near the planet. Bursty suprathermal ion enhancements (up to similar to 10 keV) were observed as far as similar to 50R(V) downtail. These enhancements are likely related to a combination of acceleration mechanisms in regions of strong turbulence, current sheet crossings, and boundary layer crossings, with a possible instance of ion heating due to ion cyclotron waves within the Venusian tail. Upstream of the planet, suprathermal ions are observed that might be related to pick-up acceleration of photoionized exospheric populations as far as 5R(V) upstream in the solar wind as has been observed before by missions such as Pioneer Venus Orbiter and Venus Express. Near the closest approach of Solar Orbiter, the Galactic cosmic ray (GCR) count rate was observed to decrease by approximately 5 percent, which is consistent with the amount of sky obscured by the planet, suggesting a negligible abundance of GCR albedo particles at over 2 R-V. Along with modulation of the GCR population very close to Venus, the Solar Orbiter observations show that the Venusian system, even far from the planet, can be an effective accelerator of ions up to similar to 30 keV. This paper is part of a series of the first papers from the Solar Orbiter Venus flyby.
  •  
3.
  • Caputi, K. I., et al. (författare)
  • ALMA Lensing Cluster Survey: An ALMA Galaxy Signposting a MUSE Galaxy Group at z=4.3 Behind "El Gordo"
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 908:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of a Multi Unit Spectroscopic Explorer (MUSE) galaxy group at z = 4.32 lensed by the massive galaxy cluster ACT-CL J0102-4915 (aka El Gordo) at z = 0.87, associated with a 1.2 mm source that is at a 2.07 0.88 kpc projected distance from one of the group galaxies. Three images of the whole system appear in the image plane. The 1.2 mm source has been detected within the Atacama Large Millimetre/submillimetre Array (ALMA) Lensing Cluster Survey (ALCS). As this ALMA source is undetected at wavelengths lambda < 2 mu m, its redshift cannot be independently determined, however, the three lensing components indicate that it belongs to the same galaxy group at z = 4.32. The four members of the MUSE galaxy group have low to intermediate stellar masses (similar to 10(7)-10(10) M) and star formation rates (SFRs) of 0.4-24 M yr(-1), resulting in high specific SFRs (sSFRs) for two of them, which suggest that these galaxies are growing fast (with stellar mass doubling times of only similar to 2 x 10(7) yr). This high incidence of starburst galaxies is likely a consequence of interactions within the galaxy group, which is compact and has high velocity dispersion. Based on the magnification-corrected sub-/millimeter continuum flux density and estimated stellar mass, we infer that the ALMA source is classified as an ordinary ultra-luminous infrared galaxy (with associated dust-obscured SFR similar to 200-300 M yr(-1)) and lies on the star formation main sequence. This reported case of an ALMA/MUSE group association suggests that some presumably isolated ALMA sources are in fact signposts of richer star-forming environments at high redshifts.
  •  
4.
  • Guerrero, Andrea, et al. (författare)
  • ALMA Lensing Cluster Survey: Average dust, gas, and star-formation properties of cluster and field galaxies from stacking analysis
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 526:2, s. 2423-2439
  • Tidskriftsartikel (refereegranskat)abstract
    • We develop new tools for continuum and spectral stacking of Atacama Large Millimeter/submillimeter Array (ALMA) data, and apply these to the ALMA Lensing Cluster Survey. We derive average dust masses, gas masses, and star-formation rates (SFRs) from the stacked observed 260-GHz continuum of 3402 individually undetected star-forming galaxies, of which 1450 are cluster galaxies and 1952 field galaxies, over three redshift and stellar mass bins (over z = 0-1.6 and log-11.7), and derive the average molecular gas content by stacking the emission line spectra in a SFR-selected subsample. The average SFRs and specific SFRs of both cluster and field galaxies are lower than those expected for main-sequence (MS) star-forming galaxies, and only galaxies with stellar mass of log-10.6 show dust and gas fractions comparable with those in the MS. The ALMA-Traced average 'highly obscured' SFRs are typically lower than the SFRs observed from optical to near-infrared spectral analysis. Cluster and field galaxies show similar trends in their contents of dust and gas, even when field galaxies were brighter in the stacked maps. From spectral stacking we find a potential CO (J = 4 → 3) line emission (signal-To-noise ratio being ∼4) when stacking cluster and field galaxies with the highest SFRs.
  •  
5.
  • Laporte, N., et al. (författare)
  • ALMA Lensing Cluster Survey: A strongly lensed multiply imaged dusty system at z ≥ 6
  • 2021
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 505:4, s. 4838-4846
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of an intrinsically faint, quintuply-imaged, dusty galaxy MACS0600-z6 at a redshift z = 6.07 viewed through the cluster MACSJ0600.1–2008 (z = 0.46). A ≃ 4σ dust detection is seen at 1.2mm as part of the ALMA Lensing Cluster Survey (ALCS), an on-going ALMA Large programme, and the redshift is secured via [C II] 158 μm emission described in a companion paper. In addition, spectroscopic follow-up with GMOS/Gemini-North shows a break in the galaxy’s spectrum, consistent with the Lyman break at that redshift. We use a detailed mass model of the cluster and infer a magnification μ ≳ 30 for the most magnified image of this galaxy, which provides an unprecedented opportunity to probe the physical properties of a sub-luminous galaxy at the end of cosmic reionization. Based on the spectral energy distribution, we infer lensing-corrected stellar and dust masses of 2.9-2.3+115 × 109 and 4.8-3.4+45 × 106 M☉, respectively, a star formation rate of 9.7-6.6+220 M☉ yr−1, an intrinsic size of 0.54-0.14+026 kpc, and a luminosity-weighted age of 200 ± 100 Myr. Strikingly, the dust production rate in this relatively young galaxy appears to be larger than that observed for equivalent, lower redshift sources. We discuss if this implies that early supernovae are more efficient dust producers and the consequences for using dust mass as a probe of earlier star formation.
  •  
6.
  • Furtak, Lukas J., et al. (författare)
  • A variable active galactic nucleus at z = 2.06 triply-imaged by the galaxy cluster MACS J0035.4−2015
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 522:4, s. 5142-5151
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of a triply imaged active galactic nucleus (AGN), lensed by the galaxy cluster MACS J0035.4−2015 (z d = 0.352). The object is detected in Hubble Space Telescope imaging taken for the RELICS program. It appears to have a quasi-stellar nucleus consistent with a point-source, with a de-magnified radius of re ≲ 100 pc. The object is spectroscopically confirmed to be an AGN at z spec = 2.063 ± 0.005 showing broad rest-frame UV emission lines, and detected in both X-ray observations with Chandra and in ALCS ALMA band 6 (1.2 mm) imaging. It has a relatively faint rest-frame UV luminosity for a quasar-like object, MUV, 1450 = −19.7 ± 0.2. The object adds to just a few quasars or other X-ray sources known to be multiply lensed by a galaxy cluster. Some diffuse emission from the host galaxy is faintly seen around the nucleus, and there is a faint object nearby sharing the same multiple-imaging symmetry and geometric redshift, possibly an interacting galaxy or a star-forming knot in the host. We present an accompanying lens model, calculate the magnifications and time delays, and infer the physical properties of the source. We find the rest-frame UV continuum and emission lines to be dominated by the AGN, and the optical emission to be dominated by the host galaxy of modest stellar mass M✶ ≃ 109.2 M⊙. We also observe some variation in the AGN emission with time, which may suggest that the AGN used to be more active. This object adds a low-redshift counterpart to several relatively faint AGN recently uncovered at high redshifts with HST and JWST.
  •  
7.
  • Heintz, K. E., et al. (författare)
  • The Gas and Stellar Content of a Metal-poor Galaxy at z = 8.496 as Revealed by JWST and ALMA
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 944:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a joint analysis of the galaxy S04590 at z = 8.496 based on NIRSpec, NIRCam, and NIRISS observations obtained as part of the Early Release Observations program of the James Webb Space Telescope (JWST) and the far-infrared [C ii] 158 μm emission line detected by dedicated Atacama Large Millimeter/submillimeter Array (ALMA) observations. We determine the physical properties of S04590 from modeling of the spectral energy distribution (SED) and through the redshifted optical nebular emission lines detected with JWST/NIRSpec. The best-fit SED model reveals a low-mass (M ⋆ = 107.2-108 M ⊙) galaxy with a low oxygen abundance of 12 + log ( O / H ) = 7.16 − 0.12 + 0.10 derived from the strong nebular and auroral emission lines. Assuming that [C ii] effectively traces the interstellar medium, we estimate the total gas mass of the galaxy to be M gas = (8.0 ± 4.0) × 108 M ⊙ based on the luminosity and spatial extent of [C ii]. This yields an exceptionally high gas fraction, f gas = M gas/(M gas + M ⋆) ≳ 90%, though one still consistent with the range expected for low metallicity. We further derive the metal mass of the galaxy based on the gas mass and gas-phase metallicity, which we find to be consistent with the expected metal production from Type II supernovae. Finally, we make the first constraints on the dust-to-gas (DTG) and dust-to-metal (DTM) ratios of galaxies in the epoch of reionization at z ≳ 6, showing overall low mass ratios of logDTG < −3.8 and logDTM < −0.5, though they are consistent with established scaling relations and in particular with those of the local metal-poor galaxy I Zwicky 18. Our analysis highlights the synergy between ALMA and JWST in characterizing the gas, metal, and stellar content of the first generation of galaxies.
  •  
8.
  • Kokorev, V., et al. (författare)
  • ALMA Lensing Cluster Survey: Hubble Space Telescope and Spitzer Photometry of 33 Lensed Fields Built with CHArGE
  • 2022
  • Ingår i: Astrophysical Journal, Supplement Series. - : American Astronomical Society. - 1538-4365 .- 0067-0049. ; 263:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a set of multiwavelength mosaics and photometric catalogs in the Atacama Large Millimeter/ submillimeter Array (ALMA) lensing cluster survey fields. The catalogs were built by the reprocessing of archival data from the Complete Hubble Archive for Galaxy Evolution compilation, taken by the Hubble Space Telescope (HST) in the Reionization Lensing Cluster Survey, Cluster Lensing And Supernova survey with Hubble, and Hubble Frontier Fields. Additionally, we have reconstructed the Spitzer Infrared Array Camera 3.6 and 4.5 μm mosaics, by utilizing all the available archival IPAC Infrared Science Archive/Spitzer Heritage Archive exposures. To alleviate the effect of blending in such a crowded region, we have modeled the Spitzer photometry by convolving the HST detection image with the Spitzer point-spread function using the novel GOLFIR software. The final catalogs contain 218,000 sources, covering a combined area of 690 arcmin2, a factor of ∼2 improvement over the currently existing photometry. A large number of detected sources is a result of reprocessing of all available and sometimes deeper exposures, in conjunction with a combined optical–near-IR detection strategy. These data will serve as an important tool in aiding the search of the submillimeter galaxies in future ALMA surveys, as well as follow-ups of the HST dark and high-z sources with JWST. Coupled with the available HST photometry, the addition of the 3.6 and 4.5 μm bands will allow us to place a better constraint on the photometric redshifts and stellar masses of these objects, thus giving us an opportunity to identify high-redshift candidates for spectroscopic follow-ups and to answer the important questions regarding the Epoch of Reionization and formation of the first galaxies. The mosaics, photometric catalogs, and the best-fit physical properties are publicly available at https:// github.com/dawn-cph/alcs-clusters.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy