SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Förnvik Hannie) srt2:(2018)"

Sökning: WFRF:(Förnvik Hannie) > (2018)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fieselmann, Andreas, et al. (författare)
  • Volumetric breast density measurement for personalized screening : Accuracy, reproducibility, and agreement with visual assessment
  • 2018
  • Ingår i: 14th International Workshop on Breast Imaging (IWBI 2018). - : SPIE. - 9781510620070 ; 10718
  • Konferensbidrag (refereegranskat)abstract
    • Assessment of breast density at the point of mammographic examination could lead to optimized breast cancer screening pathways. The onsite breast density information may offer guidance when to recommend supplemental imaging for women in a screening program. In this work, performance evaluation of a new software (Insight BD, Siemens Healthcare GmbH) for fast onsite quantification of volumetric breast density is presented. Accuracy of volumetric measurement is evaluated using breast tissue equivalent phantom experiments. Reproducibility of measurement results is analyzed using 8150 4-view mammography exams. Furthermore, agreement between breast density categories computed by the software with those determined visually by radiologists is examined. The results of the performance evaluation demonstrate that the software delivers accurate and reproducible measurements that agree well with the visual assessment of breast density by radiologists.
  •  
2.
  • Förnvik, Hannie, et al. (författare)
  • Towards determination of individual glandular dose
  • 2018
  • Ingår i: Medical Imaging 2018 : Physics of Medical Imaging - Physics of Medical Imaging. - : SPIE. - 9781510616356 ; 10573
  • Konferensbidrag (refereegranskat)abstract
    • Due to variations in amount and distribution of glandular breast tissue among women, the mean glandular dose (MGD) can be a poor measure of the individual glandular dose. Therefore, to improve the basis for risk assessment related to radiation dose from breast X-ray examinations, the distribution should be considered. Breast tomosynthesis (BT) is an imaging technique that may be used as an alternative or complement to standard mammography in breast cancer screening, and it could provide the required 3D-localisation of glandular tissue for estimation of the individual glandular dose. In this study, we investigated the possibility to localize glandular tissue from BT data and use a Monte Carlo simulation routine to estimate the glandular dose for software breast phantoms with different amount and distribution of glandular breast tissue. As an initial evaluation of the method, the local energy absorption in glandular tissue was estimated for seven breast phantoms and the corresponding phantoms recreated from reconstructed BT data. As expected, the normalized glandular dose was found to differ substantially with glandular distribution. This emphasizes the importance of glandular tissue localization for estimation of the individual glandular dose. The results showed good accuracy for estimation of normalized glandular dose using breast phantoms recreated from reconstructed BT image volumes (relative differences between -7.3% and +9.5%). Following this initial study, the method will be evaluated for more phantoms and potentially developed for patient cases. In the future it could become a useful tool in breast dosimetry as a step towards the individual glandular dose.
  •  
3.
  •  
4.
  • Ba, Alexandre, et al. (författare)
  • Inter-laboratory comparison of channelized hotelling observer computation
  • 2018
  • Ingår i: Medical Physics. - : Wiley. - 0094-2405 .- 2473-4209. ; 45:7, s. 3019-3030
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: The task-based assessment of image quality using model observers is increasingly used for the assessment of different imaging modalities. However, the performance computation of model observers needs standardization as well as a well-established trust in its implementation methodology and uncertainty estimation. The purpose of this work was to determine the degree of equivalence of the channelized Hotelling observer performance and uncertainty estimation using an intercomparison exercise. Materials and Methods: Image samples to estimate model observer performance for detection tasks were generated from two-dimensional CT image slices of a uniform water phantom. A common set of images was sent to participating laboratories to perform and document the following tasks: (a) estimate the detectability index of a well-defined CHO and its uncertainty in three conditions involving different sized targets all at the same dose, and (b) apply this CHO to an image set where ground truth was unknown to participants (lower image dose). In addition, and on an optional basis, we asked the participating laboratories to (c) estimate the performance of real human observers from a psychophysical experiment of their choice. Each of the 13 participating laboratories was confidentially assigned a participant number and image sets could be downloaded through a secure server. Results were distributed with each participant recognizable by its number and then each laboratory was able to modify their results with justification as model observer calculation are not yet a routine and potentially error prone. Results: Detectability index increased with signal size for all participants and was very consistent for 6 mm sized target while showing higher variability for 8 and 10 mm sized target. There was one order of magnitude between the lowest and the largest uncertainty estimation. Conclusions: This intercomparison helped define the state of the art of model observer performance computation and with thirteen participants, reflects openness and trust within the medical imaging community. The performance of a CHO with explicitly defined channels and a relatively large number of test images was consistently estimated by all participants. In contrast, the paper demonstrates that there is no agreement on estimating the variance of detectability in the training and testing setting.
  •  
5.
  • Dustler, Magnus, et al. (författare)
  • Binary implementation of fractal Perlin noise to simulate fibroglandular breast tissue
  • 2018
  • Ingår i: Proceedings of SPIE : Medical Imaging 2018: Physics of Medical Imaging - Medical Imaging 2018: Physics of Medical Imaging. - : SPIE. ; 10573, s. 1-8
  • Konferensbidrag (refereegranskat)abstract
    • Software breast phantoms are important in many applications within the field of breast imaging and mammography. This paper describes an improved method of using a previously employed in-house fractal Perlin noise algorithm to create binary software breast phantoms. The Perlin Noise algorithm creates smoothly varying structures of a frequency with a set band limit. By combining a range of frequencies (octaves) of noise, more complex structures are generated. Previously, visually realistic appearances were achieved with continuous noise values, but these do not adequately represent the breast as radiologically consisting of two types of tissue - fibroglandular and adipose. A binary implementation with a similarly realistic appearance would therefore be preferable. A library of noise volumes with continuous values between 0 and 1 were generated. A range of threshold values, also between 0 and 1, were applied to these noise volumes, creating binary volumes of different appearance, with high values resulting in a fine network of strands, and low values in nebulous clusters of tissue. These building blocks were then combined into composite volumes and a new threshold applied to make them binary. This created visually complex binary volumes with a visually more realistic appearance than earlier implementations of the algorithm. By using different combinations of threshold values, a library of pre-generated building blocks can be used to create an arbitrary number of software breast tissue volumes with desired appearance and density.
  •  
6.
  • Förnvik, Hannie (författare)
  • Optimization of breast tomosynthesis: Computer simulations of image acquisition and glandular dose
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Breast tomosynthesis (BT) is an X-ray imaging technique recently introduced as an alternative or complement to standard digital mammography (DM) in breast imaging and breast cancer screening. In BT, a set of projection images is acquired over a limited angular range and reconstructed into a volume of slice images. The method includes many possible combinations of acquisition parameters that have to be optimized for best possible clinical performance and outcome. The visibility of breast cancer lesions is important in this context. Compared to DM images, the reconstructed BT volume provides additional information on depth, reducing the superposition of breast tissue, which may hide true lesions or appear as false positive findings. Thus, the BT volume also contains information about the distribution of dense tissue within the breast, which is of interest when estimating the radiation dose from DM and BT exposure.In this thesis, a simulation procedure was developed for the optimization of image acquisition and estimation of individual glandular dose in BT. The procedure was shown to be useful in generating BT images with realistic sharpness, though with higher image noise and contrast than experimentally acquired images (Paper I). The procedure was used to investigate the influence of angular range, distribution of projection images, and dose distribution on simulated microcalcifications in reconstructed BT volumes. Image acquisitions with very high central dose yielded significantly lower visibility than acquisitions with more uniform dose distributions, and the depth resolution increased with wider angular range (Paper II).A method for localizing dense tissue from reconstructed BT volumes was verified using the simulation procedure (Paper III). A prototype software program was used for automatic and objective estimation of breast density in BT, with similar performance as DM (Paper IV). Using software breast phantoms recreated from reconstructed BT volumes, the glandular dose could be estimated with good overall accuracy for breast phantoms with different amounts and distributions of dense tissue (Paper V).The developed simulation procedure has been a useful tool for optimizing acquisition parameters and estimating glandular dose in BT. The procedure could potentially be developed for further evaluation of the imaging chain and estimation of individual glandular dose in human cases.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy