SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fabiano Simone 1985 ) srt2:(2020)"

Sökning: WFRF:(Fabiano Simone 1985 ) > (2020)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chen, Shangzhi, et al. (författare)
  • Conductive polymer nanoantennas for dynamic organic plasmonics
  • 2020
  • Ingår i: Nature Nanotechnology. - London : Nature Publishing Group. - 1748-3387 .- 1748-3395. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Being able to dynamically shape light at the nanoscale is oneof the ultimate goals in nano-optics1. Resonant light–matterinteraction can be achieved using conventional plasmonicsbased on metal nanostructures, but their tunability is highlylimited due to a fixed permittivity2. Materials with switchablestates and methods for dynamic control of light–matterinteraction at the nanoscale are therefore desired. Here weshow that nanodisks of a conductive polymer can supportlocalized surface plasmon resonances in the near-infraredand function as dynamic nano-optical antennas, with their resonancebehaviour tunable by chemical redox reactions. Theseplasmons originate from the mobile polaronic charge carriersof a poly(3,4-ethylenedioxythiophene:sulfate) (PEDOT:Sulf)polymer network. We demonstrate complete and reversibleswitching of the optical response of the nanoantennasby chemical tuning of their redox state, which modulatesthe material permittivity between plasmonic and dielectricregimes via non-volatile changes in the mobile chargecarrier density. Further research may study different conductivepolymers and nanostructures and explore their usein various applications, such as dynamic meta-optics andreflective displays.
  •  
2.
  • Jiang, Qinglin, et al. (författare)
  • High Thermoelectric Performance in n-Type Perylene Bisimide Induced by the Soret Effect
  • 2020
  • Ingår i: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095. ; 32:45
  • Tidskriftsartikel (refereegranskat)abstract
    • Low-cost, non-toxic, abundant organic thermoelectric materials are currently under investigation for use as potential alternatives for the production of electricity from waste heat. While organic conductors reach electrical conductivities as high as their inorganic counterparts, they suffer from an overall low thermoelectric figure of merit (ZT) due to their small Seebeck coefficient. Moreover, the lack of efficient n-type organic materials still represents a major challenge when trying to fabricate efficient organic thermoelectric modules. Here, a novel strategy is proposed both to increase the Seebeck coefficient and achieve the highest thermoelectric efficiency for n-type organic thermoelectrics to date. An organic mixed ion-electron n-type conductor based on highly crystalline and reduced perylene bisimide is developed. Quasi-frozen ionic carriers yield a large ionic Seebeck coefficient of -3021 mu V K-1, while the electronic carriers dominate the electrical conductivity which is as high as 0.18 S cm(-1)at 60% relative humidity. The overall power factor is remarkably high (165 mu W m(-1)K(-2)), with aZT= 0.23 at room temperature. The resulting single leg thermoelectric generators display a high quasi-constant power output. This work paves the way for the design and development of efficient organic thermoelectrics by the rational control of the mobility of the electronic and ionic carriers.
  •  
3.
  • Shiran Chaharsoughi, Mina, 1986- (författare)
  • Hybrid Plasmonics for Energy Harvesting and Sensing of Radiation and Heat
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The special optical properties of subwavelength metallic structures have opened up for numerous applications in different fields. The interaction of light with metal nanostructures leads to the excitation of collective oscillations of conduction-band electrons, known as plasmons. These plasmon excitations are responsible for the high absorption and high scattering of light in metallic nanostructures. High absorption of light and the subsequent temperature increase in the nanostructures make them suitable as point-like heat sources that can be controlled remotely by light.The research presented in this thesis focuses on the development and studies of hybrid devices that combine light-induced heating in plasmonic nanostructures with other materials and systems. Particular focus is put on hybrid organic-inorganic systems for applications in energy harvesting as well as in heat and radiation sensing. Harvesting energy from light fluctuations was achieved in a hybrid device consisting of plasmonic gold nanodisk arrays and a pyroelectric copolymer. In this concept, fast and efficient light-induced heating in the gold nanodisks modulated the temperature of the pyroelectric layer, which could be used to extract electrical energy from fluctuations in simulated sunlight.Integrating plasmonic nanostructures with complementary materials can also provide novel hybrid sensors, for monitoring of temperature, heat flux and radiation. In this thesis work, a hybrid sensor was designed based on the combination of a plasmonic gold nanohole layer with a pyroelectric copolymer and an ionic thermoelectric gel. The gold nanohole arrays acted both as broadband light absorbers in the visible to near-infrared spectral range of the solar spectrum and also as one of the electrodes of the sensor. In contrast to the constituent components when used separately, the hybrid sensor could provide both fast and stable signals upon heat or radiation stimuli, as well as enhanced equilibrium signals.Furthermore, a concept for heat and radiation mapping was developed that was highly sensitive and stable despite its simple structure. The concept consisted of a gel-like electrolyte connecting two separated metal nanohole electrodes on a substrate. Resembling traditional thermocouples, this concept could autonomously detect temperature changes but with several orders of magnitudes higher sensitivity. Owing to its promising sensing properties as well as its compatibility with inexpensive mass production methods on flexible substrates, such concept may be particularly interesting for electronic skin applications for health monitoring and for humanoid robotics. Finally, we improved the possibilities for the temperature mapping of the concept by modifying the structure from lateral to vertical form. Similar to the lateral device, the vertical temperature sensor showed high temperature sensitivity and stability in producing signals upon temperature changes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy