SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fagerström Jonathan) srt2:(2014)"

Sökning: WFRF:(Fagerström Jonathan) > (2014)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Fagerström, Jonathan, et al. (författare)
  • Influence of peat ash composition on particle emissions and slag formation in biomass grate co-combustion
  • 2014
  • Ingår i: Energy & Fuels. - : American Chemical Society (ACS). - 0887-0624 .- 1520-5029. ; 28:5, s. 3403-3411
  • Tidskriftsartikel (refereegranskat)abstract
    • Co-combustion by fuel blending of peat and biomass has shown positive effects on operational problems. However, peat ash compositions vary considerably, and this has been shown to affect the potential for operational problems in different fuel-blending situations. The present work used three different peat types with the objective to elucidate how the variation in peat ash composition influences both particle emissions and slag formation during co-combustion with three different biomasses in a small-scale pellet boiler. Estimations of potassium release and slag formation were performed and discussed in relation to fuel composition in the (K2O + Na2O)–(CaO + MgO)–(SiO2) system. All tested peat types reduced the fine particle emissions by capturing potassium into the bottom ash as one or several of the following forms: slag, sulfates, chlorides, and alumina silicates. However, there were considerable differences between the peat types, presumably depending upon both their content and mineral composition of silicon, calcium, aluminum, and sulfur. Some general important and beneficial properties of peat type in co-combustion situations with biomass are defined here, but the specific blending proportion of peat should be decided on an individual basis for each scenario based on the relative contents in the fuel mixture of the most relevant ash-forming elements.
  •  
3.
  • Qu, Zhechao, et al. (författare)
  • Real-time In-Situ Detection of Potassium Release during Combustion of Pelletized Biomass using Tunable Diode Laser Absorption Spectroscopy
  • 2014
  • Ingår i: Impacts of Fuel Quality on Power Production October 26 –31, 2014, Snowbird, Utah, USA. ; , s. 1-14
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Tunable diode laser absorption spectroscopy (TDLAS) was used for quantitative in-situ detection of gaseous elemental potassium (K) at distances 2-11 mm above biomass pellets combusted in a macro-thermogravimetric analyzer (macro-TGA). Single pellets of energy wood (EW) and wheat straw (WS) were converted in air at a furnace temperature of 850 °C and a carrier flow rate of 15 liters per minute. A second TDLAS system measured water vapor concentration and temperature above the pellets. In addition, semi-time-resolved K release data was obtained from conventional ICP-MS/AES analysis of fuel/ash residues collected at several occasions during devolatilization and char combustion. It was found that the fuels differ with respect to relative K-release and temporal release histories. Significant concentrations of K(g) were detected with TDLAS above the pellets during devolatilization, but no K(g) was observed during char combustion, independent of the fuel type. The amount of K(g)tot measured above the pellets during devolatilization was larger for EW than for WS, even though the total K content of WS was a factor of 60 higher. By combining TDLAS and ICP data, and supported by equilibrium calculations, these results indicate that, during devocalization, K is mainly released as KCl from wheat straw, whereas both KCl and KOH are released from energy wood.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy