SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Falk Sörqvist Elin) srt2:(2015)"

Sökning: WFRF:(Falk Sörqvist Elin) > (2015)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Lundin, Karin E, et al. (författare)
  • Susceptibility to infections, without concomitant hyper-IgE, reported in 1976, is caused by hypomorphic mutation in the phosphoglucomutase 3 (PGM3) gene
  • 2015
  • Ingår i: Clinical Immunology. - : Elsevier. - 1521-6616 .- 1521-7035. ; 161:2, s. 366-372
  • Tidskriftsartikel (refereegranskat)abstract
    • Phosphoglucomutase 3 (PGM3) is an enzyme converting N-acetyl-glucosamine-6-phosphate to N-acetylglucosamine-l-phosphate, a precursor important for glycosylation. Mutations in the PGM3 gene have recently been identified as the cause of novel primary immunodeficiency with a hyper-IgE like syndrome. Here we report the occurrence of a homozygous mutation in the PGM3 gene in a family with immunodeficient children, described already in 1976. DNA from two of the immunodeficient siblings was sequenced and shown to encode the same homozygous missense mutation, causing a destabilized protein with reduced enzymatic capacity. Affected individuals were highly prone to infections, but lack the developmental defects in the nervous and skeletal systems, reported in other families. Moreover, normal IgE levels were found. Thus, belonging to the expanding group of congenital glycosylation defects, PGM3 deficiency is characterized by immunodeficiency, with or without increased IgE levels, and with variable forms of developmental defects affecting other organ systems.
  •  
3.
  • Mansouri, Larry, et al. (författare)
  • Functional loss of I kappa B epsilon leads to NF-kappa B deregulation in aggressive chronic lymphocytic leukemia
  • 2015
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 0022-1007 .- 1540-9538. ; 212:6, s. 833-843
  • Tidskriftsartikel (refereegranskat)abstract
    • NF-kappa B is constitutively activated in chronic lymphocytic leukemia (CLL); however, the implicated molecular mechanisms remain largely unknown. Thus, we performed targeted deep sequencing of 18 core complex genes within the NF-kappa B pathway in a discovery and validation CLL cohort totaling 315 cases. The most frequently mutated gene was NFKBIE (21/315 cases; 7%), which encodes I kappa B epsilon, a negative regulator of NF-kappa B in normal B cells. Strikingly, 13 of these cases carried an identical 4-bp frameshift deletion, resulting in a truncated protein. Screening of an additional 377 CLL cases revealed that NFKBIE aberrations predominated in poor-prognostic patients and were associated with inferior outcome. Minor subclones and/or clonal evolution were also observed, thus potentially linking this recurrent event to disease progression. Compared with wild-type patients, NFKBIE-deleted cases showed reduced I kappa B epsilon protein levels and decreased p65 inhibition, along with increased phosphorylation and nuclear translocation of p65. Considering the central role of B cell receptor (BcR) signaling in CLL pathobiology, it is notable that I kappa B epsilon loss was enriched in aggressive cases with distinctive stereotyped BcR, likely contributing to their poor prognosis, and leading to an altered response to BcR inhibitors. Because NFKBIE deletions were observed in several other B cell lymphomas, our findings suggest a novel common mechanism of NF-kappa B deregulation during lymphomagenesis.
  •  
4.
  • Mansouri, Larry, et al. (författare)
  • Functional loss of IκBε leads to NF-κB deregulation in aggressive chronic lymphocytic leukemia.
  • 2015
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 212:6, s. 833-843
  • Tidskriftsartikel (refereegranskat)abstract
    • NF-κB is constitutively activated in chronic lymphocytic leukemia (CLL); however, the implicated molecular mechanisms remain largely unknown. Thus, we performed targeted deep sequencing of 18 core complex genes within the NF-κB pathway in a discovery and validation CLL cohort totaling 315 cases. The most frequently mutated gene was NFKBIE (21/315 cases; 7%), which encodes IκBε, a negative regulator of NF-κB in normal B cells. Strikingly, 13 of these cases carried an identical 4-bp frameshift deletion, resulting in a truncated protein. Screening of an additional 377 CLL cases revealed that NFKBIE aberrations predominated in poor-prognostic patients and were associated with inferior outcome. Minor subclones and/or clonal evolution were also observed, thus potentially linking this recurrent event to disease progression. Compared with wild-type patients, NFKBIE-deleted cases showed reduced IκBε protein levels and decreased p65 inhibition, along with increased phosphorylation and nuclear translocation of p65. Considering the central role of B cell receptor (BcR) signaling in CLL pathobiology, it is notable that IκBε loss was enriched in aggressive cases with distinctive stereotyped BcR, likely contributing to their poor prognosis, and leading to an altered response to BcR inhibitors. Because NFKBIE deletions were observed in several other B cell lymphomas, our findings suggest a novel common mechanism of NF-κB deregulation during lymphomagenesis.
  •  
5.
  •  
6.
  • Moens, Lotte N. J., et al. (författare)
  • HaloPlex Targeted Resequencing for Mutation Detection in Clinical Formalin-Fixed, Paraffin-Embedded Tumor Samples
  • 2015
  • Ingår i: Journal of Molecular Diagnostics. - : Elsevier BV. - 1525-1578 .- 1943-7811. ; 17:6, s. 729-739
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent years, the advent of massively parallel next-generation sequencing technologies has enabled substantial advances in the study of human diseases. Combined with targeted DNA enrichment methods, high sequence coverage can be obtained for different genes simultaneously at a reduced cost per sample, creating unique opportunities for clinical cancer diagnostics. However, the formalin-fixed, paraffin-embedded (FFPE) process of tissue samples, routinely used in pathology departments, results in DNA fragmentation and nucleotide modifications that introduce a number of technical challenges for downstream biomotecular analyses. We evaluated the HaloPlex target enrichment system for somatic mutation detection in 80 tissue fractions derived from 20 clinical cancer cases with paired tumor and normal tissue available in both FFPE and fresh-frozen format. Several modifications to the standard method were introduced, including a reduced target fragment Length and two strand capturing. We found that FFPE material can be used for HaloPlex-based target enrichment and next-generation sequencing, even when starting from small amounts of DNA. By specifically capturing both strands for each target fragment, we were able to reduce the number of false-positive errors caused by FFPE-induced artifacts and Lower the detection limit for somatic mutations. We believe that the HaloPlex method presented here will be broadly applicable as a tool for somatic mutation detection in clinical cancer settings.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy