SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fan X. L.) srt2:(2005-2009)"

Sökning: WFRF:(Fan X. L.) > (2005-2009)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Schael, S, et al. (författare)
  • Precision electroweak measurements on the Z resonance
  • 2006
  • Ingår i: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 427:5-6, s. 257-454
  • Forskningsöversikt (refereegranskat)abstract
    • We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLID experiment using a polarised beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarised asymmetries. The mass and width of the Z boson, m(Z) and Gamma(Z), and its couplings to fermions, for example the p parameter and the effective electroweak mixing angle for leptons, are precisely measured: m(Z) = 91.1875 +/- 0.0021 GeV, Gamma(Z) = 2.4952 +/- 0.0023 GeV, rho(l) = 1.0050 +/- 0.0010, sin(2)theta(eff)(lept) = 0.23153 +/- 0.00016. The number of light neutrino species is determined to be 2.9840 +/- 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, m(t) = 173(+10)(+13) GeV, and the mass of the W boson, m(W) = 80.363 +/- 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of m(t) and m(W), the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than 285 GeV at 95% confidence level. (c) 2006 Elsevier B.V. All rights reserved.
  •  
2.
  •  
3.
  • Shi, F., et al. (författare)
  • Synthesis and characterization of two novel high valent dinuclear complexes with a triphenolate ligand bearing functional groups
  • 2005
  • Ingår i: Chinese Chemical Letters. - 1001-8417 .- 1878-5964. ; 16:1, s. 89-92
  • Tidskriftsartikel (refereegranskat)abstract
    • Two novel high valent complexes [M-2(III, III)L(mu-OAc)(2)](PF6)-P-. (M=Mn, Fe; 9) were prepared, where L was the tri-anion of 2,6-bis{[(2-hydroxy-3-(morpholin-4-yl methyl)-5-tertbutyl benzyl)(pyridyl-2-methyl)amino]methyl}-4-methyl phenol which contained additional phenolic, tert-butyl and morpholin-4-yl methyl groups compared to its parent [Mn-2(II, II)(bpmp) (mu-OAc)(2)](CIO4)-C-. (10). These improvements decreased the difference between the new model and (Mn)(4) cluster (OEC in nature).
  •  
4.
  • Thompson, Rodger I., et al. (författare)
  • An observational determination of the proton to electron mass ratio in the early Universe
  • 2009
  • Ingår i: Astrophysical Journal. - 1538-4357 .- 0004-637X. ; 703:2009 October 1, s. 1648 - 1662
  • Tidskriftsartikel (refereegranskat)abstract
    • In an effort to resolve the discrepancy between two measurements of the fundamental constant μ, the proton to electron mass ratio, at early times in the universe we reanalyze the same data used in the earlier studies. Our analysis of the molecular hydrogen absorption lines in archival Very Large Telescope/Ultraviolet and Visible Echelle Spectrometer (UVES) spectra of the damped Lyman alpha systems in the quasi-stellar objects Q0347-383 and Q0405-443 yields a combined measurement of a Δμ/μ value of (–7 ± 8) × 10–6, consistent with no change in the value of μ over a time span of 11.5 Gyr. Here, we define Δμ as (μ z – μ0) where μ z is the value of μ at a redshift of z and μ0 is the present-day value. Our null result is consistent with the recent measurements of King et al., Δμ/μ = (2.6 ± 3.0) × 10–6, and inconsistent with the positive detection of a change in μ by Reinhold et al. Both of the previous studies and this study are based on the same data but with differing analysis methods. Improvements in the wavelength calibration over the UVES pipeline calibration is a key element in both of the null results. This leads to the conclusion that the fundamental constant μ is unchanged to an accuracy of 10–5 over the last 80% of the age of the universe, well into the matter dominated epoch. This limit provides constraints on models of dark energy that invoke rolling scalar fields and also limits the parameter space of supersymmetric or string theory models of physics. New instruments, both planned and under construction, will provide opportunities to greatly improve the accuracy of these measurements.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy