SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fasching Angelica) srt2:(2010-2014)"

Sökning: WFRF:(Fasching Angelica) > (2010-2014)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Edlund, Jenny, et al. (författare)
  • The roles of NADPH-oxidase and nNOS for the increased oxidative stress and the oxygen consumption in the diabetic kidney
  • 2010
  • Ingår i: Diabetes/Metabolism Research Reviews. - : Wiley. - 1520-7552 .- 1520-7560. ; 26:5, s. 349-356
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Sustained hyperglycaemia induces increased renal oxygen consumption resulting in reduced oxygen availability in the diabetic kidney. We investigated the roles of the nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase and the neuronal nitric oxide synthase (nNOS) for the increased oxygen consumption in streptozotocin-diabetic rats.MethodsOxygen consumption was measured in isolated proximal tubular cells (PTC) from streptozotocin-induced diabetic rats (n = 7-9 per group) with and without chronic treatment with apocynin, a NADPH-oxidase inhibitor, or S-methyl-L-thiocitrulline (SMTC), a selective nNOS inhibitor, or a combination of the two and the results were compared to normoglycaemic controls (n = 10). Oxidative stress was estimated from thiobarbituric acid reactive substances and protein expression measured by Western blot.ResultsProximal tubular cells from untreated diabetic rats had increased oxygen consumption compared to controls (40.6 +/- 7.9 versus 10.9 +/- 2.0 nmol/mg protein/min). All treatments reduced the diabetes-induced increase in oxygen consumption (apocynin 10.5 +/- 1.7, SMTC 19.7 +/- 3.0 and apocynin +/- SMTC 21.6 +/- 3.6 nmol/mg protein/min). Neither apocynin nor SMTC had any effect on the oxygen consumption in cells pre-incubated with ouabain, an inhibitor of active electrolyte transport. Oxidative stress was elevated in the diabetic kidney and inhibited by all treatments. The increased oxygen consumption by diabetic proximal tubular cells correlated with increased protein expressions of p47phox and nNOS and the treatments prevented these increases.ConclusionsDiabetes induces oxidative stress, which increases oxygen consumption in proximal tubular cells. Inhibition of either NADPH-oxidase or nNOS prevented the increased oxygen consumption. The effect of blocking both these enzymes was less than additive suggesting overlapping pathways which warrant further studies.
  •  
2.
  • Franzen, Stephanie, et al. (författare)
  • Differences in susceptibility to develop parameters of diabetic nephropathy in four mouse strains with type 1 diabetes
  • 2014
  • Ingår i: American Journal of Physiology-Renal Physiology. - : American Physiological Society. - 1931-857X .- 1522-1466. ; 306:10, s. F1171-F1178
  • Tidskriftsartikel (refereegranskat)abstract
    • One-third of diabetes mellitus patients develop diabetic nephropathy, and with underlying mechanisms unknown it is imperative that diabetic animal models resemble human disease. The present study investigated the susceptibility to develop diabetic nephropathy in four commonly used and commercially available mouse strains with type 1 diabetes to determine the suitability of each strain. Type 1 diabetes was induced in C57Bl/6, NMRI, BALB/c, and 129Sv mice by alloxan, and conscious glomerular filtration rate, proteinuria, and oxidative stress levels were measured in control and diabetic animals at baseline and after 5 and 10 wk. Histological alterations were analyzed using periodic acid-Schiff staining. Diabetic C57Bl/6 displayed increased glomerular filtration rate, i.e., hyperfiltration, whereas all other parameters remained unchanged. Diabetic NMRI developed the most pronounced hyperfiltration as well as increased oxidative stress and proteinuria but without glomerular damage. Diabetic BALB/c did not develop hyperfiltration but presented with pronounced proteinuria, increased oxidative stress, and glomerular damage. Diabetic 129Sv displayed proteinuria and increased oxidative stress without glomerular hyperfiltration or damage. However, all strains displayed intras-train correlation between oxidative stress and proteinuria. In conclusion, diabetic C57Bl/6 and NMRI both developed glomerular hyperfiltration but neither presented with histological damage, although NMRI developed low-degree proteinuria. Thus these strains may be suitable when investigating the mechanism causing hyperfiltration. Neither BALB/c nor 129Sv developed hyperfiltration although both developed pronounced proteinuria. However, only BALB/c developed detectable histological damage. Thus BALB/c may be suitable when studying the roles of proteinuria and histological alterations for the progression of diabetic nephropathy.
  •  
3.
  • Friederich-Persson, Malou, et al. (författare)
  • Increased kidney metabolism as a pathway to kidney tissue hypoxia and damage : effects of triiodothyronine and dinitrophenol in normoglycemic rats.
  • 2013
  • Ingår i: Advances in Experimental Medicine and Biology. - New York, NY : Springer-Verlag New York. - 0065-2598 .- 2214-8019. - 9781461474111 - 9781461472568 ; 789, s. 9-14
  • Tidskriftsartikel (refereegranskat)abstract
    • Intrarenal tissue hypoxia is an acknowledged common pathway to end-stage renal disease in clinically common conditions associated with development of chronic kidney disease, such as diabetes and hypertension. In diabetic kidneys, increased oxygen metabolism mediated by mitochondrial uncoupling results in decreased kidney oxygen tension (PO2) and contributes to the development of diabetic nephropathy. The present study investigated whether increased intrarenal oxygen metabolism per se can cause intrarenal tissue hypoxia and kidney damage, independently of confounding factors such as hyperglycemia and oxidative stress. Male Sprague-Dawley rats were untreated or treated with either triiodothyronine (T3, 10 g/kg bw/day, subcutaneously for 10 days) or the mitochondria uncoupler dinitrophenol (DNP, 30 mg/kg bw/day, oral gavage for 14 days), after which in vivo kidney function was evaluated in terms of glomerular filtration rate (GFR, inulin clearance), renal blood flow (RBF, Transonic, PAH clearance), cortical PO2 (Clark-type electrodes), kidney oxygen consumption (QO2), and proteinuria. Administration of both T3 and DNP increased kidney QO2 and decreased PO2 which resulted in proteinuria. However, GFR and RBF were unaltered by either treatment. The present study demonstrates that increased kidney metabolism per se can cause intrarenal tissue hypoxia which results in proteinuria. Increased kidney QO2 and concomitantly reduced PO2 may therefore be a mechanism for the development of chronic kidney disease and progression to end-stage renal disease.
  •  
4.
  •  
5.
  • Nordquist, Lina, et al. (författare)
  • Hypoxia in the diabetic kidney is independent of advanced glycation end-products.
  • 2013
  • Ingår i: Advances in Experimental Medicine and Biology. - New York, NY : Kluwer Academic Publishers. - 0065-2598 .- 2214-8019. ; 765, s. 185-193
  • Tidskriftsartikel (refereegranskat)abstract
    • Sustained hyperglycemia is closely associated with increased risk to develop nephropathy. We have previously reported alterations in the intrarenal oxygen metabolism already after the early onset of diabetes. Furthermore, formation of advanced glycation end-products (AGE) is postulated as a major contributor to diabetic nephropathy. We therefore investigated the possible relationship between altered oxygen metabolism and AGE in diabetic kidneys.Normoglycemic and streptozotocin-diabetic rats with and without chronic treatment with aminoguanidine (AGE inhibitor; 600 mg/kg bw/24 h in drinking water) or L-N(6)-(1-Iminoethyl)lysine (L-NIL, iNOS inhibitor, 1 mg/kg bw/24 h in drinking water) were studied 2 weeks after induction of diabetes. Glomerular filtration rate (GFR) was estimated by inulin clearance, oxygen tension (pO(2)) and interstitial pH by microelectrodes and regional renal blood flow (RBF) by laser-Doppler. Histological changes were evaluated on fixed tissue.Glomerular hyperfiltration was unaffected by aminoguanidine, whereas L-NIL normalized GFR in diabetic rats. pO(2) and interstitial pH, but not RBF, were lower in both kidney cortex and medulla compared to control rats, but was unaffected by both chronic treatments. Urinary protein excretion was higher in diabetic rats and unaffected by L-NIL, whereas aminoguanidine paradoxically increased this parameter. Damage scores were similar in all groups.In conclusion, diabetes-induced alterations in intrarenal oxygen metabolism are independent of the AGE pathway, and precede any morphological changes. These findings highlight the early stage of diabetes as being a metabolic disorder also in the kidney.
  •  
6.
  • Palm, Fredrik, et al. (författare)
  • Nitric oxide originating from NOS1 controls oxygen utilization and electrolyte transport efficiency in the diabetic kidney
  • 2010
  • Ingår i: American Journal of Physiology - Renal Physiology. - : American Physiological Society. - 0363-6127 .- 1522-1466 .- 1931-857X. ; 298:2, s. F416-F420
  • Tidskriftsartikel (refereegranskat)abstract
    • Palm F, Fasching A, Hansell P, K llskog. Nitric oxide originating from NOS1 controls oxygen utilization and electrolyte transport efficiency in the diabetic kidney. Am J Physiol Renal Physiol 298: F416-F420, 2010. First published November 18, 2009; doi: 10.1152/ajprenal.00229.2009.-Nitric oxide (NO) is a potent regulator of both vascular tone and cellular oxygen consumption (QO(2)). Diabetic kidneys have reduced NO availability and increased QO(2). However, the exact nitric oxide synthase (NOS) isoform regulating QO(2), hemodynamics, and excretory function in the diabetic kidney remains unclear. We therefore investigated the effects of both selective neuronal NOS (NOS1) inhibition and nonselective NOS inhibition. Oxygen utilization, electrolyte transport efficiency [tubular Na+ transport (T-Na)/QO(2)], renal blood flow (RBF), glomerular filtration rate (GFR), and mean arterial pressure (MAP) were measured in vivo in control and streptozotocin-diabetic rats before and after administration of the selective NOS1 inhibitor S-methyl-L-thiocitrulline (SMTC) or the nonselective NOS inhibitor N-G-nitro-L-arginine methyl ester (L-NAME). Diabetic rats had higher baseline QO(2) and GFR than control rats, although RBF was similar in the groups. SMTC and L-NAME increased QO(2) and reduced T-Na/QO(2) only in the diabetic animals, whereas both inhibitors increased MAP and reduced RBF in both groups. GFR was reduced by L-NAME, but SMTC had no effect in either group. Carbachol increased RBF and decreased MAP in SMTC-treated rats, whereas it had no effect in L-NAME-treated rats, indicating that SMTC selectively inhibited NOS1. In conclusion, NO regulates RBF and GFR similarly in both control and diabetic rats. However, selective NOS1 inhibition increased QO(2) and reduced T-Na/QO(2) in the diabetic rat kidney, indicating a pivotal role of NO produced by NOS1 in maintaining control of QO(2) and tissue oxygenation in these kidneys.
  •  
7.
  • Palm, Fredrik, et al. (författare)
  • Renomedullary Blood Flow And Blood Volume Are Increased During Vasopressin Escape
  • 2010
  • Konferensbidrag (refereegranskat)abstract
    • Hyponatremia is a common electrolyte disorder usually caused by inappropriate vasopressin (AVP) levels relative to serum osmolality. The degree of the hyponatremia is limited by "escape" from AVP-induced antidiuresis, characterized by increased urine volume and decreased urine osmolality independently of circulating AVP. The mechanisms mediating escape are not fully understood, but we have hypothesized that increased renomedullary blood flow (BF) contributes to this process. We therefore investigated intrarenal BF and blood volume distribution in rats with and without escape.Adult male Sprague-Dawley rats (n=10) were infused with DDAVP (5 ng/h) to produce maximal antidiuresis. Half were fed a liquid diet (AIN-76) to produce escape; half were fed a solid diet to prevent escape. After 5 days, all rats were anesthetized with Inactin and high resolution images (voxel size 97x97x600 µm) of renal BF were acquired using a Siemens Definition Dual Source CT. Iopromide (0.15 ml/rat) was rapidly injected iv and the contrast over the kidney area was collected during 30 s. Data were evaluated by analyzing local renal contrast density utilizing the Siemens Syngo body perfusion tool and correlated to the aorta. Cortical and medullary BF were 709±41 and 251±50 ml/100ml/min respectively in non-escaped rats. Cortical BF in escaped rats was similar (588±81 ml/100ml/min), but medullary BF was increased compared to non-escaped rats (666±105 ml/100ml/min). Blood volumes were similar in the two groups in cortex (42±1 vs. 49±6 ml/100ml), but elevated in the medulla of escaped rats (70±3 vs 18±3 ml/100ml).Our results demonstrate that escape is accompanied by markedly elevated renomedullary BF and volume. Elevated BF to the renal medulla results in reduced interstitial osmolality, and may also contribute to the down-regulation of aquarporin-2 water channels known to accompany escape. These results therefore provide a potential mechanistic explanation for the reduced ability to concentrate urine during AVP escape.
  •  
8.
  • Palm, Fredrik, et al. (författare)
  • Uremia induces abnormal oxygen consumption in tubules and aggravates chronic hypoxia of the kidney via oxidative stress
  • 2010
  • Ingår i: American Journal of Physiology - Renal Physiology. - : American Physiological Society. - 0363-6127 .- 1522-1466 .- 1931-857X. ; 299:2, s. F380-F386
  • Tidskriftsartikel (refereegranskat)abstract
    • In addition to causing uremic symptoms, uremic toxins accelerate the progression of renal failure. To elucidate the pathophysiology of uremic states, we investigated the effect of indoxyl sulfate (IS), a representative uremic toxin, on oxygen metabolism in tubular cells. We demonstrated an increase in oxygen consumption by IS in freshly isolated rat and human proximal tubules. Studies utilizing ouabain, the Na-K-ATPase inhibitor, and apocynin, the NADPH oxidase inhibitor, as well as the in vivo gene-silencing approach to knock down p22(phox) showed that the increase in tubular oxygen consumption by IS is dependent on Na-K-ATPase and oxidative stress. We investigated whether the enhanced oxygen consumption led to subsequent hypoxia of the kidney. An increase in serum IS concentrations in rats administered indole was associated with a decrease in renal oxygenation (8 h). The remnant kidney in rats developed hypoxia at 16 wk. Treatment of the rats with AST-120, an oral adsorbent that removes uremic toxins, reduced serum IS levels and improved oxygenation of the kidney. Amelioration of hypoxia in the remnant kidney was associated with better renal functions and less histological injury. Reduction of serum IS levels also led to a decrease in oxidative stress in the kidney. Our ex vivo and in vivo studies implicated that uremic states may deteriorate renal dysfunction via dysregulating oxygen metabolism in tubular cells. The abnormal oxygen metabolism in tubular cells by uremic toxins was, at least in part, mediated by oxidative stress.
  •  
9.
  • Patinha, Daniela, et al. (författare)
  • Angiotensin II contributes to glomerular hyperfiltration in diabetic rats independently of adenosine type I receptors
  • 2013
  • Ingår i: AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY. - : American Physiological Society. - 1931-857X .- 1522-1466 .- 0363-6127. ; 304:5, s. F614-F622
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased angiotensin II (ANG II) or adenosine can potentiate each other in the regulation of renal hemodynamics and tubular function. Diabetes is characterized by hyperfiltration, yet the roles of ANG II and adenosine receptors for controlling baseline renal blood flow (RBF) or tubular Na+ handling in diabetes is presently unknown. Accordingly, the changes in their functions were investigated in control and 2-wk streptozotocin-diabetic rats after intrarenal infusion of the ANG II AT(1) receptor antagonist candesartan, the adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), or their combination. Compared with controls, the baseline blood pressure, RBF, and renal vascular resistance (RVR) were similar in diabetics, whereas the glomerular filtration rate (GFR) and filtration fraction (FF) were increased. Candesartan, DPCPX, or the combination increased RBF and decreased RVR similarly in all groups. In controls, the GFR was increased by DPCPX, but in diabetics, it was decreased by candesartan. The FF was decreased by candesartan and DPCPX, independently. DPCPX caused the most pronounced increase in fractional Na+ excretion in both controls and diabetics, whereas candesartan or the combination only affected fractional Li+ excretion in diabetics. These results suggest that RBF, via a unifying mechanism, and tubular function are under strict tonic control of both ANG II and adenosine in both control and diabetic kidneys. Furthermore, increased vascular AT(1) receptor activity is a contribution to diabetes-induced hyperfiltration independent of any effect of adenosine A(1) receptors.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy