SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fatemi S.) srt2:(2010-2014)"

Sökning: WFRF:(Fatemi S.) > (2010-2014)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dhanaya, M. B., et al. (författare)
  • Proton entry into the near-lunar plasma wake for magnetic field aligned flow
  • 2013
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 40:2, s. 2913-2917
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first observation of protons in the near-lunar (100–200 km from the surface) and deeper (near anti-subsolar point) plasma wake when the interplanetary magnetic field (IMF) and solar wind velocity (vsw) are parallel (aligned flow; angle between IMF and vsw≤10°). More than 98% of the observations during aligned flow condition showed the presence of protons in the wake. These observations are obtained by the Solar Wind Monitor sensor of the Sub-keV Atom Reflecting Analyser experiment on Chandrayaan-1. The observation cannot be explained by the conventional fluid models for aligned flow. Back tracing of the observed protons suggests that their source is the solar wind. The larger gyroradii of the wake protons compared to that of solar wind suggest that they were part of the tail of the solar wind velocity distribution function. Such protons could enter the wake due to their large gyroradii even when the flow is aligned to IMF. However, the wake boundary electric field may also play a role in the entry of the protons into the wake.
  •  
2.
  • Poppe, A.R., et al. (författare)
  • ARTEMIS observations of extreme diamagnetic fields in the lunar wake
  • 2014
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 41:11, s. 3766-3773
  • Tidskriftsartikel (refereegranskat)abstract
    • We present two Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun ( ARTEMIS) observations of diamagnetic fields in the lunar wake at strengths exceeding twice the ambient magnetic field during high plasma beta conditions. The first observation was 350 km from the lunar surface while the Moon was located in the terrestrial magnetosheath with elevated particle temperatures. The second observation was in the solar wind ranging from 500 to 2000 km downstream, with a relatively low magnetic field strength of approximately 1.6 nT. In both cases, the plasma beta exceeded 10. We discuss the observations and compare the data to hybrid plasma simulations in order to validate the model under such extreme conditions and to elucidate the global structure of the lunar wake during these observations. The extreme nature of the diamagnetic field in the lunar wake provides an important end-member test case for theoretical and modeling studies of the various plasma processes operating in the lunar wake.
  •  
3.
  • Zhou, X.-Z., et al. (författare)
  • Lunar dayside current in the terrestrial lobe: ARTEMIS observations
  • 2014
  • Ingår i: Journal of Geophysical Research - Space Physics. - : John Wiley & Sons. - 2169-9380 .- 2169-9402. ; 119:5, s. 3381-3391
  • Tidskriftsartikel (refereegranskat)abstract
    • We report Acceleration, Reconnection, Turbulence and Electrodynamics of Moon's Interaction with the Sun (ARTEMIS) dual-probe observations of two events in the terrestrial magnetotail lobe, both characterized by upward moving heavy ions of lunar origin at one of the probes that is magnetically connected with the dayside lunar surface. By treating magnetic measurements at the other probe as the unperturbed lobe fields, we obtain background-subtracted magnetic perturbations (most significantly in Bz) when the first probe moved in the dawn-dusk direction across flux tubes magnetically connected to the Moon. These magnetic perturbations indicate the presence of field-aligned current above the lunar surface. By examining possible carriers of field-aligned current, we find that lunar heavy ions and accompanying electrons both contribute considerably to the current. Observations of the field-aligned current also suggest that the charging process at the dayside lunar surface and the associated lobe plasma environment, which have traditionally been viewed as a one-dimensional current balance problem, are actually more complicated. These observations give the first insights into how heavy ions affect the lunar dayside environment in terms of multispecies plasma dynamics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy