SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fausti F.) "

Sökning: WFRF:(Fausti F.)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Drlica-Wagner, A., et al. (författare)
  • SEARCH FOR GAMMA-RAY EMISSION FROM DES DWARF SPHEROIDAL GALAXY CANDIDATES WITH FERMI-LAT DATA
  • 2015
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 809:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to their proximity, high dark-matter (DM) content, and apparent absence of non-thermal processes, Milky Way dwarf spheroidal satellite galaxies (dSphs) are excellent targets for the indirect detection of DM. Recently, eight new dSph candidates were discovered using the first year of data from the Dark Energy Survey (DES). We searched for gamma-ray emission coincident with the positions of these new objects in six years of Fermi Large Area Telescope data. We found no significant excesses of gamma-ray emission. Under the assumption that the DES candidates are dSphs with DM halo properties similar to the known dSphs, we computed individual and combined limits on the velocity-averaged DM annihilation cross section for these new targets. If the estimated DM content of these dSph candidates is confirmed, they will constrain the annihilation cross section to lie below the thermal relic cross section for DM particles with masses less than or similar to 20 GeV annihilating via the b (b) over bar or pi(+)pi(-) channels.
  •  
2.
  • Bisconti, F, et al. (författare)
  • Mini-EUSO engineering model : Tests in open-sky condition
  • 2019
  • Ingår i: 36th International Cosmic Ray Conference, ICRC 2019. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • Mini-EUSO is a UV telescope that will look downwards to the Earth’s atmosphere onboard the International Space Station. With the design of the ultra-high energy cosmic ray fluorescence detectors belonging to the JEM-EUSO program, it will make the first UV map of the Earth by observing atmospheric phenomena such as transient luminous events, sprites and lightning, as well as meteors and bioluminescence from earth. Diffused light from laser shots from the ground, which mimic the fluorescence light emitted by Nitrogen molecules when extensive air showers pass through the atmosphere, can be used to verify the capability of this kind of detector to observe ultra-high energy cosmic rays. To validate the electronics and the trigger algorithms developed for Mini-EUSO, a scaled down version of the telescope with 1:9 of the original focal surface and a lens of 2.5 cm diameter has been built. Tests of the Mini-EUSO engineering model have been made in laboratory and in open sky condition. In this paper, we report results of observations of the night sky, which include the detection of stars, meteors, a planet and a rocket body reflecting the sunlight. Interesting results of the observation of city lights are also reported. 
  •  
3.
  • Casolino, M, et al. (författare)
  • Mini-EUSO experiment to study UV emission of terrestrial and astrophysical origin onboard of the International Space Station
  • 2019
  • Ingår i: 36th International Cosmic Ray Conference, ICRC 2019. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • Mini-EUSO will observe the Earth in the UV range (300 - 400 nm) offering the opportunity to study a variety of atmospheric events such as Transient Luminous Events (TLEs), meteors and marine bioluminescence. Furthermore it aims to search for Ultra High Energy Cosmic Rays (UHECR) above 1021 eV and Strange Quark Matter (SQM). The detector is expected to be launched to the International Space Station in August 2019 and look at the Earth in nadir mode from the UV-transparent window of the Zvezda module of the International Space Station. The instrument comprises a compact telescope with a large field of view (44?), based on an optical system employing two Fresnel lenses for light collection. The light is focused onto an array of 36 multi-anode photomultiplier tubes (MAPMT), for a total of 2304 pixels and the resulting signal is converted into digital, processed and stored via the electronics subsystems on-board. In addition to the main detector, Mini-EUSO contains two ancillary cameras[4] for complementary measurements in the near infrared (1500 - 1600 nm) and visible (400 - 780 nm) range and also a 8 × 8 SiPM imaging array. 
  •  
4.
  • Miyamoto, H, et al. (författare)
  • Space debris detection and tracking with the techniques of cosmic ray physics
  • 2019
  • Ingår i: 36th International Cosmic Ray Conference, ICRC 2019. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • Space Debris (SD) consist of non-operational artificial objects orbiting around the Earth, which could possibly damage space vehicles, such as the International Space Station (ISS) or other manned spacecrafts. The vast majority of such objects are cm-sized, not catalogued and usually the tracking data are not precise enough. Here we present the feasibility study of SD detection and tracking with techniques usually employed in cosmic-ray physics. For this purpose, we have evaluated the possibility of using Mini-EUSO, a space-borne fluorescence telescope to be deployed on the ISS, to track SD illuminated by the Sun. By means of ESAF (EUSO Simulation and analysis Framework) simulation and by developing the trigger algorithms, we estimated the minimum size and maximum distances of detectable SD. We then studied the number of possible SD detections using an ESA software called MASTER (Meteoroid and SD Terrestrial Environment Reference). With the Mini-EUSO Engineering Model (Mini-EUSO EM), we performed some measurements to estimate the reflectance of the most common SD materials and to demonstrate the ability of Mini-EUSO to detect SD events. We also performed some tests in open-sky conditions, identifying and tracking fast-moving objects. In particular, the detection of a rocket body allowed us to confirm the simulation outcomes predictions and the expected performance of the detector. 
  •  
5.
  • Miyamoto, H., et al. (författare)
  • The Euso@turlab : Test of mini-EUSO engineering model
  • 2019
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The TurLab facility is a laboratory, equipped with a 5 m diameter and 1 m depth rotating tank, located in the Physics Department of the University of Turin. Originally, it was mainly built to study systems of different scales where rotation plays a key role in the fluid behavior such as in atmospheric and oceanic flows. In the past few years the TurLab facility has been used to perform experiments related to the observation of Extreme Energy Cosmic Rays (EECRs) from space using the fluorescence technique. For example, in the case of the JEM-EUSO mission, where the diffuse night brightness and artificial light sources can vary significantly in time and space inside the Field of View of the telescope. The Focal Surface of Mini-EUSO Engineering Model (Mini-EUSO EM) with the level 1 (L1) and 2 (L2) trigger logics implemented in the Photo-Detector Module (PDM) has been tested at TurLab. Tests related to the possibility of using an EUSO-like detector for other type of applications such as Space Debris (SD) monitoring and imaging detector have also been pursued. The tests and results obtained within the EUSO@TurLab Project on these different topics are presented. 
  •  
6.
  • Albert, A., et al. (författare)
  • SEARCHING FOR DARK MATTER ANNIHILATION IN RECENTLY DISCOVERED MILKY WAY SATELLITES WITH FERMI-LAT
  • 2017
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 834:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We search for excess gamma-ray emission coincident with the positions of confirmed and candidate Milky Way satellite galaxies using six years of data from the Fermi Large Area Telescope (LAT). Our sample of 45 stellar systems includes 28 kinematically confirmed dark-matter-dominated dwarf spheroidal galaxies (dSphs) and 17 recently discovered systems that have photometric characteristics consistent with the population of known dSphs. For each of these targets, the relative predicted gamma-ray flux due to dark matter annihilation is taken from kinematic analysis if available, and estimated from a distance-based scaling relation otherwise, assuming that the stellar systems are DM-dominated dSphs. LAT data coincident with four of the newly discovered targets show a slight preference (each similar to 2 sigma local) for gamma-ray emission in excess of the background. However, the ensemble of derived gamma-ray flux upper limits for individual targets is consistent with the expectation from analyzing random blank-sky regions, and a combined analysis of the population of stellar systems yields no globally significant excess (global significance < 1 sigma). Our analysis has increased sensitivity compared to the analysis of 15 confirmed dSphs by Ackermann et al. The observed constraints on the DM annihilation cross section are statistically consistent with the background expectation, improving by a factor of similar to 2 for large DM masses (m(DM, b<(b)over bar>) greater than or similar to 1 TeV and m(DM, tau+tau-) greater than or similar to 70 GeV) and weakening by a factor of similar to 1.5 at lower masses relative to previously observed limits.
  •  
7.
  • Belov, A., et al. (författare)
  • The integration and testing of the Mini-EUSO multi-level trigger system
  • 2017
  • Ingår i: Advances in Space Research. - : Elsevier. - 0273-1177.
  • Tidskriftsartikel (refereegranskat)abstract
    • The Mini-EUSO telescope is designed by the JEM-EUSO Collaboration to observe the UV emission of the Earth from the vantage point of the International Space Station (ISS) in low Earth orbit. The main goal of the mission is to map the Earth in the UV, thus increasing the technological readiness level of future EUSO experiments and to lay the groundwork for the detection of Extreme Energy Cosmic Rays (EECRs) from space (Ebisuzaki et al., 2014). Due to its high time resolution of 2.5 μs, Mini-EUSO is capable of detecting a wide range of UV phenomena in the Earth’s atmosphere. In order to maximise the scientific return of the mission, it is necessary to implement a multi-level trigger logic for data selection over different timescales. This logic is key to the success of the mission and thus must be thoroughly tested and carefully integrated into the data processing system prior to the launch. This article introduces the motivation behind the trigger design and details the integration and testing of the logic.
  •  
8.
  • Fausti, F., et al. (författare)
  • A multi-level triggering system for the Mini-EUSO UV telescope
  • 2017
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • As a pathfinder for the JEM-EUSO mission, Mini-EUSO is a 25cm diameter telescope which is going to be launched and positioned inside the International Space Station (ISS) in 2018. The main scientific goal of this mission is the achievement of a state-of-the-art UV map of the Earth from a 400 Km altitude, with ∼ 6 km of pixel spatial resolution, collecting data though a multi-level triggering system. The signal is collected with Multi-Anode Photo Multiplier Tubes (MAPMTs) and digitized by means of custom chips. The raw data moves then to a central system, the Zynq Board, where the trigger operates a data selection dividing different classes of events characterized by specific time scales. The acquired UV map will be used as discrimination threshold for the Extreme Energy Cosmic-Ray detection. 
  •  
9.
  • Belov, A., et al. (författare)
  • Mini-EUSO photodetector module data processing system
  • 2017
  • Ingår i: Proceedings of Science. - : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • Mini-EUSO is a UV telescope which is developed by the JEM-EUSO collaboration to be placed on board the International Space Station (ISS) to carry out measurements of UV atmosphere airglow and transient luminous events (TLEs) in a wide field of view (>40°) and high temporal resolution (2.5 μs). Mini-EUSO is developed to be a space qualified pathfinder of future JEMEUSO missions. Optical system of the detector consists of two Fresnel lenses of 25 cm diameter. The focal surface is composed of 36 produced by Hamamatsu multi anode photomultiplier tubes (MAPMT), each with 64 pixels. The output signal of all 2304 pixels is digitized and then passed to the data processing system that was specially developed for the experiment and is being discussed in this work. Data processing system is based on produced by Xilinx ZYNQ chip that contains both programmable part (FPGA) and processor. Such combination in a single chip gives a big advantage for processing a data gathered from focal surface including fast multi-level trigger algorithms, data buffering, MAPMTs high voltage control algorithms, interfaces with front-end electronics and with the separate central processor unit for data storage. The multi-level trigger was developed for the mini-EUSO instrument to perform measurements in various time scales (temporal resolutions 2.5 μs, 320 μs, 40 ms). This trigger was successfully implemented and tested. 
  •  
10.
  • Capel, Francesca, et al. (författare)
  • The mini-EUSO multi-level trigger algorithm and its performance
  • 2017
  • Ingår i: Proceedings of Science. - Trieste, Italy : Sissa Medialab Srl.
  • Konferensbidrag (refereegranskat)abstract
    • The Mini-EUSO telescope is designed by the JEM-EUSO Collaboration to observe the UV emission of the Earth from the vantage point of the International Space Station in low Earth orbit. The main goal of the mission is to map the Earth in the UV, thus increasing the technological readiness level of future EUSO experiments and to lay the groundwork for the detection of Extreme Energy Cosmic Rays (EECRs) from space. Due to its high time resolution of 2.5 μs, Mini-EUSO is capable of detecting a wide range of UV phenomena in the Earth's atmosphere. In order to maximise the scientific return of the mission, it is necessary to implement a multi-level trigger logic for data selection on various different timescales. This logic is key to the success of the mission and thus must be thoroughly tested and integrated into the data processing system prior to launch. This article introduces the motivation behind the trigger design and details the testing of the logic through simulations and data taken at the TurLab facility.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy