SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fazakerley A.) srt2:(2010-2014)"

Sökning: WFRF:(Fazakerley A.) > (2010-2014)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berthomier, M., et al. (författare)
  • Alfven : magnetosphere-ionosphere connection explorers
  • 2012
  • Ingår i: Experimental astronomy. - Dordrecht : Springer. - 0922-6435 .- 1572-9508. ; 33:2-3, s. 445-489
  • Tidskriftsartikel (refereegranskat)abstract
    • The aurorae are dynamic, luminous displays that grace the night skies of Earth's high latitude regions. The solar wind emanating from the Sun is their ultimate energy source, but the chain of plasma physical processes leading to auroral displays is complex. The special conditions at the interface between the solar wind-driven magnetosphere and the ionospheric environment at the top of Earth's atmosphere play a central role. In this Auroral Acceleration Region (AAR) persistent electric fields directed along the magnetic field accelerate magnetospheric electrons to the high energies needed to excite luminosity when they hit the atmosphere. The "ideal magnetohydrodynamics" description of space plasmas which is useful in much of the magnetosphere cannot be used to understand the AAR. The AAR has been studied by a small number of single spacecraft missions which revealed an environment rich in wave-particle interactions, plasma turbulence, and nonlinear acceleration processes, acting on a variety of spatio-temporal scales. The pioneering 4-spacecraft Cluster magnetospheric research mission is now fortuitously visiting the AAR, but its particle instruments are too slow to allow resolve many of the key plasma physics phenomena. The Alfv,n concept is designed specifically to take the next step in studying the aurora, by making the crucial high-time resolution, multi-scale measurements in the AAR, needed to address the key science questions of auroral plasma physics. The new knowledge that the mission will produce will find application in studies of the Sun, the processes that accelerate the solar wind and that produce aurora on other planets.
  •  
2.
  • Nakamura, R., et al. (författare)
  • Flow bouncing and electron injection observed by Cluster
  • 2013
  • Ingår i: Journal of Geophysical Research-Space Physics. - : American Geophysical Union (AGU). - 2169-9380. ; 118:5, s. 2055-2072
  • Tidskriftsartikel (refereegranskat)abstract
    • Characteristics of particles and fields in the flow-bouncing region are studied based on multipoint observations from Cluster located at 13-15R(E) downtail during a substorm event around 12:50 UT on 7 September 2007. The Cluster spacecraft were separated by a distance of up to 10,000 km and allowed to determine the mesoscale evolution of the current sheet as well as the development of the dipolarization front. We show that the flow bouncing took place associated with a tailward-directed j x B force in a disturbed current sheet in addition to an enhanced tailward pressure gradient force. Multiple Earthward propagating dipolarization fronts accompanied by enhanced flux of energetic electrons were observed before the flow bouncing. The sequence of events started with a localized dipolarization front and ended with a large scale (>10R(E)) dipolarization front accompanied by a major increase in energetic electrons at all spacecraft and immediately followed by flow bouncing. Multiple dipolarization fronts result in the formation of compressed magnetic field with a plasma bulge bounded by thin ion-scale current layers, a favorable condition for flow bouncing. These observations suggest that to understand the flow bouncing and related acceleration of plasma in the near-Earth tail, both the large-scale MHD properties and the transient and small-scale effect of the plasma interaction with the Earth-dipole field need to be taken into account.
  •  
3.
  • Wild, J. A., et al. (författare)
  • Midnight sector observations of auroral omega bands
  • 2011
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 116, s. A00I30-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present observations of auroral omega bands on 28 September 2009. Although generally associated with the substorm recovery phase and typically observed in the morning sector, the features presented here occurred just after expansion phase onset and were observed in the midnight sector, dawnward of the onset region. An all-sky imager located in northeastern Iceland revealed that the omega bands were similar to 150 x 200 km in size and propagated eastward at similar to 0.4 km s(-1) while a colocated ground magnetometer recorded the simultaneous occurrence of Ps6 pulsations. Although somewhat smaller and slower moving than the majority of previously reported omega bands, the observed structures are clear examples of this phenomenon, albeit in an atypical location and unusually early in the substorm cycle. The THEMIS C probe provided detailed measurements of the upstream interplanetary environment, while the Cluster satellites were located in the tail plasma sheet conjugate to the ground-based all-sky imager. The Cluster satellites observed bursts of 0.1-3 keV electrons moving parallel to the magnetic field toward the Northern Hemisphere auroral ionosphere; these bursts were associated with increased levels of field-aligned Poynting flux. The in situ measurements are consistent with electron acceleration via shear Alfven waves in the plasma sheet similar to 8 R-E tailward of the Earth. Although a one-to-one association between auroral and magnetospheric features was not found, our observations suggest that Alfven waves in the plasma sheet are responsible for field-aligned currents that cause Ps6 pulsations and auroral brightening in the ionosphere. Our findings agree with the conclusions of earlier studies that auroral omega bands have a source mechanism in the midtail plasma sheet.
  •  
4.
  • Forsyth, C., et al. (författare)
  • In situ spatiotemporal measurements of the detailed azimuthal substructure of the substorm current wedge
  • 2014
  • Ingår i: Journal of Geophysical Research: Space Physics. - 2169-9380. ; 119:2, s. 927-946
  • Tidskriftsartikel (refereegranskat)abstract
    • The substorm current wedge (SCW) is a fundamental component of geomagnetic substorms. Models tend to describe the SCW as a simple line current flowing into the ionosphere toward dawn and out of the ionosphere toward dusk, linked by a westward electrojet. We use multispacecraft observations from perigee passes of the Cluster 1 and 4 spacecraft during a substorm on 15 January 2010, in conjunction with ground-based observations, to examine the spatial structuring and temporal variability of the SCW. At this time, the spacecraft traveled east-west azimuthally above the auroral region. We show that the SCW has significant azimuthal substructure on scales of 100km at altitudes of 4000-7000km. We identify 26 individual current sheets in the Cluster 4 data and 34 individual current sheets in the Cluster 1 data, with Cluster 1 passing through the SCW 120-240s after Cluster 4 at 1300-2000km higher altitude. Both spacecraft observed large-scale regions of net upward and downward field-aligned current, consistent with the large-scale characteristics of the SCW, although sheets of oppositely directed currents were observed within both regions. We show that the majority of these current sheets were closely aligned to a north-south direction, in contrast to the expected east-west orientation of the preonset aurora. Comparing our results with observations of the field-aligned current associated with bursty bulk flows (BBFs), we conclude that significant questions remain for the explanation of SCW structuring by BBF-driven wedgelets. Our results therefore represent constraints on future modeling and theoretical frameworks on the generation of the SCW.
  •  
5.
  • Forsyth, C., et al. (författare)
  • Temporal evolution and electric potential structure of the auroral acceleration region from multispacecraft measurements
  • 2012
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117:12, s. A12203-
  • Tidskriftsartikel (refereegranskat)abstract
    • Bright aurorae can be excited by the acceleration of electrons into the atmosphere in violation of ideal magnetohydrodynamics. Modeling studies predict that the accelerating electric potential consists of electric double layers at the boundaries of an acceleration region but observations suggest that particle acceleration occurs throughout this region. Using multispacecraft observations from Cluster, we have examined two upward current regions on 14 December 2009. Our observations show that the potential difference below C4 and C3 changed by up to 1.7 kV between their respective crossings, which were separated by 150 s. The field-aligned current density observed by C3 was also larger than that observed by C4. The potential drop above C3 and C4 was approximately the same in both crossings. Using a novel technique of quantitively comparing the electron spectra measured by Cluster 1 and 3, which were separated in altitude, we determine when these spacecraft made effectively magnetically conjugate observations, and we use these conjugate observations to determine the instantaneous distribution of the potential drop in the AAR. Our observations show that an average of 15% of the potential drop in the AAR was located between C1 at 6235 km and C3 at 4685 km altitude, with a maximum potential drop between the spacecraft of 500 V, and that the majority of the potential drop was below C3. Assuming a spatial invariance along the length of the upward current region, we discuss these observations in terms of temporal changes and the vertical structure of the electrostatic potential drop and in the context of existing models and previous single- and multispacecraft observations.
  •  
6.
  • Marklund, Göran T., et al. (författare)
  • Cluster multipoint study of the acceleration potential pattern and electrodynamics of an auroral surge and its associated horn arc
  • 2012
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117:10, s. A10223-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cluster results are presented from the acceleration region of an auroral surge and connected horn arc, observed during an extended time period of substorm activity. The Cluster spacecraft crossed different magnetic local time (MLT) sectors of the surge and horn, with lag times of 2-10 min. Acceleration potential patterns are derived for the horn arc and for the double arc (surge and horn) at the surge front and deeper into the surge. The parallel potential drop of the horn arc ranged between 4 and 7 kV. At the surge front, two weakly coupled U-potentials with parallel potential drops of 8 (7) kV and 7 (5) kV were derived for the surge and horn, respectively, from the C3 (C4) data. A similar, more coupled pattern was derived for the region deeper into the surge. We also address how the field-aligned currents of the surge and horn system close in the ionosphere. The Cluster data allow almost simultaneous estimates of the latitudinal current closure at various MLT sectors. Significant net upward currents are derived for the horn and surge, whereas the currents at the surge front were found to be balanced. The net upward horn current is proposed to be fed by the zonal divergence of the westward Pedersen current in the horn, consistent with the acceleration potential decrease in the westward horn direction. The net upward surge current is proposed to be fed by the divergence of a westward electrojet and by localized downward currents adjacent to the surge.
  •  
7.
  • Marklund, Göran T., et al. (författare)
  • Evolution in space and time of the quasi-static acceleration potential of inverted-V aurora and its interaction with Alfvenic boundary processes
  • 2011
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 116, s. A00K13-
  • Tidskriftsartikel (refereegranskat)abstract
    • Results are presented from Cluster crossings of the acceleration region of two inverted-V auroras located in the poleward part of an extensive substorm bulge. The particle and field data are used to infer the acceleration potentials of the arcs and their distribution in altitude and latitude. The C1 data are consistent with a symmetric potential pattern, composed of two negative U potentials and one positive U potential in between, and the C3 and C4 data are consistent with an asymmetric pattern, where the dominating potential structure extends deep into the polar cap boundary (PCB) region. The two patterns may either correspond to different stages of evolution of the same double arc system or represent two longitudinally separated double arc systems. For all spacecraft, the potential well of the poleward arc extends into the PCB region, whereas the density cavity does not but remains confined to R1. This suggests that the Alfvenic activity observed within the PCB region prevents the cavity formation, consistent with the associated FACs being roughly balanced over this region. The results show that Alfvenic and quasi-static acceleration operates jointly in the PCB region, varying from being about equally important (on C1) to being predominantly quasi-static (on C3/C4). The presence (absence) of an upward electron beam, associated with a positive potential structure and a downward current, observed by C1 (C4/C3) is expected from its short life time, shorter than the time lag between the Cluster spacecraft. The evolution involves both a broadening and a density reduction of the associated downward current sheet to below the critical current density above which parallel electric fields will form. The deepest potential well of 13 kV observed by C4 was located in Region 1, adjacent to the PCB region and coinciding with the deepest density cavity, with a minimum density of 0.1 cm(-3). The interface between Region 1 and the PCB region, coinciding with the steep density gradient, appears to be the leading edge of the cavity.
  •  
8.
  • Varsani, A., et al. (författare)
  • Cluster observations of the substructure of a flux transfer event : analysis of high-time-resolution particle data
  • 2014
  • Ingår i: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 32:9, s. 1093-1117
  • Tidskriftsartikel (refereegranskat)abstract
    • Flux transfer events (FTEs) are signatures of transient reconnection at the dayside magnetopause, transporting flux from the dayside of the magnetosphere into the magnetotail lobes. They have previously been observed to contain a combination of magnetosheath and magnetospheric plasma. On 12 February 2007, the four Cluster spacecraft were widely separated across the magnetopause and observed a crater-like FTE as they crossed the Earth's dayside magnetopause through its low-latitude boundary layer. The particle instruments on the Cluster spacecraft were in burst mode and returning data providing 3-D velocity distribution functions (VDFs) at 4 s resolution during the observation of this FTE. Moreover, the magnetic field observed during the event remained closely aligned with the spacecraft spin axis and thus we have been able to use these 3-D data to reconstruct nearly full pitch angle distributions of electrons and ions at high time resolution (up to 32 times faster than available from the normal mode data stream). These observations within the boundary layer and inside the core of the FTE show that both the interior and the surrounding structure of the FTE consist of multiple individual layers of plasma, in greater number than previously identified. Our observations show a cold plasma inside the core, a thin layer of antiparallel-moving electrons at the edge of FTE itself, and field-aligned ions with Alfvenic speeds at the trailing edge of the FTE. We discuss the plasma characteristics in these FTE layers, their possible relevance to the magnetopause reconnection processes and attempt to distinguish which of the various different FTE models may be relevant in this case. These data are particularly relevant given the impending launch of NASA's MMS mission, for which similar observations are expected to be more routine.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy