SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Feng Yue Hua) srt2:(2015-2019)"

Sökning: WFRF:(Feng Yue Hua) > (2015-2019)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Wei, Jiang, et al. (författare)
  • 17β-estradiol regulates the expression of apolipoprotein M through estrogen receptor α-specific binding motif in its promoter
  • 2017
  • Ingår i: Lipids in Health and Disease. - : Springer Science and Business Media LLC. - 1476-511X. ; 16:1, s. 1-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: We have previously demonstrated that estrogen could significantly enhance expression of apolipoprotein M (apoM), whereas the molecular basis of its mechanism is not fully elucidated yet. To further investigate the mechanism behind the estrogen induced up-regulation of apoM expression. Results: Our results demonstrated either free 17β-estradiol (E2) or membrane-impermeable bovine serum albumin-conjugated E2 (E2-BSA) could modulate human apoM gene expression via the estrogen receptor alpha (ER-α) pathway in the HepG2 cells. Moreover, experiments with the luciferase activity analysis of truncated apoM promoters could demonstrate that a regulatory region (from-1580 to −1575 bp (−GGTCA-)) upstream of the transcriptional start site of apoM gene was essential for the basal transcriptional activity that regulated by the ER-α. With the applications of an electrophoresis mobility shift assay and a chromatin immunoprecipitation assay, we could successfully identify a specific ER-α binding element in the apoM promoter region. Conculsion: In summary, the present study indicates that 17β-estradiol induced up-regulation of apoM in HepG2 cells is through an ER-α-dependent pathway involving ER-α binding element in the promoter of the apoM gene.
  •  
3.
  • Feng, Yue Hua, et al. (författare)
  • Increased apolipoprotein M induced by lack of scavenger receptor BI is not activated via HDL-mediated cholesterol uptake in hepatocytes
  • 2018
  • Ingår i: Lipids in Health and Disease. - : Springer Science and Business Media LLC. - 1476-511X. ; 17:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Scavenger receptor BI (SR-BI) is a classic high-density lipoprotein (HDL) receptor, which mediates selective lipid uptake from HDL cholesterol esters (HDL-C). Apolipoprotein M (ApoM), as a component of HDL particles, could influence preβ-HDL formation and cholesterol efflux. The aim of this study was to determine whether SR-BI deficiency influenced the expression of ApoM. Methods: Blood samples and liver tissues were collected from SR-BI gene knockout mice, and serum lipid parameters, including total cholesterol (TC), triglyceride (TG), high and low-density lipoprotein cholesterol (HDL-C and LDL-C) and ApoM were measured. Hepatic ApoM and ApoAI mRNA levels were also determined. In addition, BLT-1, an inhibitor of SR-BI, was added to HepG2 cells cultured with cholesterol and HDL, under serum or serum-free conditions. The mRNA and protein expression levels of ApoM were detected by RT-PCR and western blot. Results: We found that increased serum ApoM protein levels corresponded with high hepatic ApoM mRNA levels in both male and female SR-BI-/- mice. Besides, serum TC and HDL-C were also significantly increased. Treatment of HepG2 hepatoma cells with SR-BI specific inhibitor, BLT-1, could up-regulate ApoM expression in serum-containing medium but not in serum-free medium, even in the presence of HDL-C and cholesterol. Conclusions: Results suggested that SR-BI deficiency promoted ApoM expression, but the increased ApoM might be independent from HDL-mediated cholesterol uptake in hepatocytes.
  •  
4.
  • Zhu, Bin, et al. (författare)
  • Apolipoprotein M Protects Against Lipopolysaccharide-Induced Acute Lung Injury via Sphingosine-1-Phosphate Signaling
  • 2018
  • Ingår i: Inflammation. - : Springer Science and Business Media LLC. - 0360-3997 .- 1573-2576. ; 41:2, s. 643-653
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract: It had been demonstrated that apolipoprotein M (apoM) is an important carrier of sphingosine-1-phosphate (S1P) in blood, and the S1P has critical roles in the pathogenesis of sepsis-induced acute lung injury (ALI). In the present study, we investigated whether apoM has beneficial effects in a mouse model after lipopolysaccharide (LPS)-induced ALI. Forty-eight mice were divided into two groups: male C57BL/6 wild-type (apoM+/+) group (n = 24) and apoM gene-deficient (apoM−/−) group (n = 24) and then randomly subdivided into four subgroups (n = 6 each) according to different intraperitoneal (i.p.) injection: control group, W146 group, LPS group, and LPS + W146 group. Serum levels of interleukin-1 beta (IL-1β) and mRNA levels of IL-1β, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), lung histology, wet/dry weight ratio, and immunohistochemistry were measured at 3 h after the baseline and compared in each group. Our results clearly demonstrated that IL-1β mRNA levels and other inflammatory biomarkers were significantly increased in the lungs of LPS-induced ALI apoM−/− mice compared to those of the apoM+/+ mice. Moreover, when apoM+/+ mice were treated with W146, a S1P receptor (S1PR1) antagonist, these inflammatory biomarkers could be significantly upregulated by LPS-induced ALI. Therefore, it suggests that apoM-S1P-S1PR1 signaling might underlie the pathogenesis of ALI and apoM could have physiological benefits to alleviate LPS-induced ALI.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy