SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fernandez Celine) srt2:(2010-2014)"

Sökning: WFRF:(Fernandez Celine) > (2010-2014)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Axling, Ulrika, et al. (författare)
  • Green tea powder and Lactobacillus plantarum affect gut microbiota, lipid metabolism and inflammation in high-fat fed C57BL/6J mice
  • 2012
  • Ingår i: Nutrition & Metabolism. - : Springer Science and Business Media LLC. - 1743-7075. ; 9:105
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Type 2 diabetes is associated with obesity, ectopic lipid accumulation and low-grade inflammation. A dysfunctional gut microbiota has been suggested to participate in the pathogenesis of the disease. Green tea is rich in polyphenols and has previously been shown to exert beneficial metabolic effects. Lactobacillus plantarum has the ability to metabolize phenolic acids. The health promoting effect of whole green tea powder as a prebiotic compound has not been thoroughly investigated previously. Methods: C57BL/6J mice were fed a high-fat diet with or without a supplement of 4% green tea powder (GT), and offered drinking water supplemented with Lactobacillus plantarum DSM 15313 (Lp) or the combination of both (Lp + GT) for 22 weeks. Parameters related to obesity, glucose tolerance, lipid metabolism, hepatic steatosis and inflammation were examined. Small intestinal tissue and caecal content were collected for bacterial analysis. Results: Mice in the Lp + GT group had significantly more Lactobacillus and higher diversity of bacteria in the intestine compared to both mice in the control and the GT group. Green tea strongly reduced the body fat content and hepatic triacylglycerol and cholesterol accumulation. The reduction was negatively correlated to the amount of Akkermansia and/or the total amount of bacteria in the small intestine. Markers of inflammation were reduced in the Lp + GT group compared to control. PLS analysis of correlations between the microbiota and the metabolic variables of the individual mice showed that relatively few components of the microbiota had high impact on the correlation model. Conclusions: Green tea powder in combination with a single strain of Lactobacillus plantarum was able to promote growth of Lactobacillus in the intestine and to attenuate high fat diet-induced inflammation. In addition, a component of the microbiota, Akkermansia, correlated negatively with several metabolic parameters known to be risk factors for the development of type 2 diabetes.
  •  
2.
  • Fernandez, Celine, et al. (författare)
  • Altered Desaturation and Elongation of Fatty Acids in Hormone-Sensitive Lipase Null Mice
  • 2011
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 6:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Hormone-sensitive lipase (HSL) is expressed predominantly in adipose tissue, where it plays an important role in catecholamine-stimulated hydrolysis of stored lipids, thus mobilizing fatty acids. HSL exhibits broad substrate specificity and besides acylglycerides it hydrolyzes cholesteryl esters, retinyl esters and lipoidal esters. Despite its role in fatty acid mobilization, HSL null mice have been shown to be resistant to diet-induced obesity. The aim of this study was to define lipid profiles in plasma, white adipose tissue (WAT) and liver of HSL null mice, in order to better understand the role of this multifunctional enzyme. Methodology/ Principal Findings: This study used global and targeted lipidomics and expression profiling to reveal changed lipid profiles in WAT, liver and plasma as well as altered expression of desaturases and elongases in WAT and liver of HSL null mice on high fat diet. Decreased mRNA levels of stearoyl-CoA desaturase 1 and 2 in WAT were consistent with a lowered ratio of 16:1n7/16:0 and 18:1n9/18:0 in WAT and plasma. In WAT, increased ratio of 18:0/16:0 could be linked to elevated mRNA levels of the Elovl1 elongase. Conclusions: This study illustrates the importance of HSL for normal lipid metabolism in response to a high fat diet. HSL deficiency greatly influences the expression of elongases and desaturases, resulting in altered lipid profiles in WAT, liver and plasma. Finally, altered proportions of palmitoleate, a recently-suggested lipokine, in tissue and plasma of HSL null mice, could be an important factor mediating and contributing to the changed lipid profile, and possibly also to the decreased insulin sensitivity seen in HSL null mice.
  •  
3.
  • Fernandez, Celine, et al. (författare)
  • Plasma Lipid Composition and Risk of Developing Cardiovascular Disease
  • 2013
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 8:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: We tested whether characteristic changes of the plasma lipidome in individuals with comparable total lipids level associate with future cardiovascular disease (CVD) outcome and whether 23 validated gene variants associated with coronary artery disease (CAD) affect CVD associated lipid species. Methods and Results: Screening of the fasted plasma lipidome was performed by top-down shotgun analysis and lipidome compositions compared between incident CVD cases (n = 211) and controls (n = 216) from the prospective population-based MDC study using logistic regression adjusting for Framingham risk factors. Associations with incident CVD were seen for eight lipid species (0.21 <= q <= 0.23). Each standard deviation unit higher baseline levels of two lysophosphatidylcholine species (LPC), LPC16:0 and LPC20:4, was associated with a decreased risk for CVD (P=0.024-0.028). Sphingomyelin (SM) 38: 2 was associated with increased odds of CVD (P=0.057). Five triglyceride (TAG) species were associated with protection (P=0.031-0.049). LPC16:0 was negatively correlated with the carotid intima-media thickness (P=0.010) and with HbA1c (P=0.012) whereas SM38:2 was positively correlated with LDL-cholesterol (P=0.0*10(-6)) and the q-values were good (q <= 0.03). The risk allele of 8 CAD-associated gene variants showed significant association with the plasma level of several lipid species. However, the q-values were high for many of the associations (0.015 <= q <= 0.75). Risk allele carriers of 3 CAD-loci had reduced level of LPC16:0 and/or LPC 20:4 (P <= 0.056). Conclusion: Our study suggests that CVD development is preceded by reduced levels of LPC16: 0, LPC20: 4 and some specific TAG species and by increased levels of SM38:2. It also indicates that certain lipid species are intermediate phenotypes between genetic susceptibility and overt CVD. But it is a preliminary study that awaits replication in a larger population because statistical significance was lost for the associations between lipid species and future cardiovascular events when correcting for multiple testing.
  •  
4.
  • Fernandez, Celine, et al. (författare)
  • Size, structure and scaling relationships in glycogen from various sources investigated with asymmetrical flow field-flow fractionation and 1H NMR
  • 2011
  • Ingår i: International Journal of Biological Macromolecules. - : Elsevier BV. - 1879-0003 .- 0141-8130. ; 49:4, s. 458-465
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we investigate the size, structure and scaling relationships in glycogen isolated from five different animal sources. For this purpose a versatile fractionation technique, asymmetrical flow field-flow fractionation (AsFlFFF), coupled to multi-angle light scattering, is utilized. For determination of the average degree of branching 1H NMR is utilized. The results give a detailed insight into the physico-chemical properties of glycogen over the whole size distribution. The results show that glycogen is a hyper branched macromolecule with wide size distributions, and in some samples two major populations are clearly observed which most likely correspond to β- and α-particles of glycogen. The results also illustrates that glycogen is a polysaccharide showing rather diverse conformational properties, over the size distribution, depending on its origin and the extraction procedure. The ratio between root-mean-square radius and hydrodynamic radius varies depending of both sample origin the molar mass of the macromolecules, reflecting differences in conformation and scaling within the size distribution. Thus, a priori assumptions regarding the rrms/rh are difficult to make and rrms/rh based on average properties give an incomplete description of the properties. Furthermore, the results display the strength of the apparent density (as obtained from AsFlFFF-MALS-RI) as a characterization parameter for scaling in disperse macromolecules. © 2011 Elsevier B.V.
  •  
5.
  •  
6.
  • Scholz, Birger, et al. (författare)
  • Impact of Temperature Dependent Sampling Procedures in Proteomics and Peptidomics : A Characterization of the Liver and Pancreas Post Mortem Degradome
  • 2011
  • Ingår i: Molecular & Cellular Proteomics. - 1535-9476 .- 1535-9484. ; 10:3, s. M900229MCP200-
  • Tidskriftsartikel (refereegranskat)abstract
    • Little is known about the nature of post mortem degradation of proteins and peptides on a global level, the so-called degradome. This is especially true for nonneural tissues. Degradome properties in relation to sampling procedures on different tissues are of great importance for the studies of, for instance, post translational modifications and/or the establishment of clinical biobanks. Here, snap freezing of fresh(< 2 min post mortem time) mouse liver and pancreas tissue is compared with rapid heat stabilization with regard to effects on the proteome (using two-dimensional differential in-gel electrophoresis) and peptidome (using label free liquid chromatography). We report several proteins and peptides that exhibit heightened degradation sensitivity, for instance superoxide dismutase in liver, and peptidyl-prolyl cis-trans isomerase and insulin C-peptides in pancreas. Tissue sampling based on snap freezing produces a greater amount of degradation products and lower levels of endogenous peptides than rapid heat stabilization. We also demonstrate that solely snap freezing related degradation can be attenuated by subsequent heat stabilization. We conclude that tissue sampling involving a rapid heat stabilization step is preferable to freezing with regard to proteomic and peptidomic sample quality.
  •  
7.
  • Wang, Thomas J., et al. (författare)
  • Metabolite profiles and the risk of developing diabetes
  • 2011
  • Ingår i: Nature Medicine. - : Springer Science and Business Media LLC. - 1546-170X .- 1078-8956. ; 17:4, s. 83-448
  • Tidskriftsartikel (refereegranskat)abstract
    • Emerging technologies allow the high-throughput profiling of metabolic status from a blood specimen (metabolomics). We investigated whether metabolite profiles could predict the development of diabetes. Among 2,422 normoglycemic individuals followed for 12 years, 201 developed diabetes. Amino acids, amines and other polar metabolites were profiled in baseline specimens by liquid chromatography-tandem mass spectrometry (LC-MS). Cases and controls were matched for age, body mass index and fasting glucose. Five branched-chain and aromatic amino acids had highly significant associations with future diabetes: isoleucine, leucine, valine, tyrosine and phenylalanine. A combination of three amino acids predicted future diabetes (with a more than fivefold higher risk for individuals in top quartile). The results were replicated in an independent, prospective cohort. These findings underscore the potential key role of amino acid metabolism early in the pathogenesis of diabetes and suggest that amino acid profiles could aid in diabetes risk assessment.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy