SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Filippenko Alexei V.) srt2:(2003-2004)"

Sökning: WFRF:(Filippenko Alexei V.) > (2003-2004)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chugai, Nikolai N., et al. (författare)
  • The Type IIn supernova 1994W : evidence for the explosive ejection of a circumstellar envelope
  • 2004
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 352, s. 1213-1231
  • Tidskriftsartikel (refereegranskat)abstract
    • We present and analyse spectra of the Type IIn supernova (SN) 1994W obtained between 18 and 203d after explosion. During the luminous phase (first 100d) the line profiles are composed of three major components: (i) narrow P-Cygni lines with the absorption minima at -700kms-1 (ii) broad emission lines with blue velocity at zero intensity ~4000km s-1 and (iii) broad, smooth wings extending out to at least ~5000kms-1, most apparent in Hα. These components are identified with an expanding circumstellar (CS) envelope, shocked cool gas in the forward post-shock region, and multiple Thomson scattering in the CS envelope, respectively. The absence of broad P-Cygni lines from the SN is the result of the formation of an optically thick, cool, dense shell at the interface of the ejecta and the CS envelope. Models of the SN deceleration and Thomson scattering wings are used to recover the density (n~ 109cm-3), radial extent [~(4-5) × 1015cm] and Thomson optical depth (τT>~ 2.5) of the CS envelope during the first month. The plateau-like SN light curve is reproduced by a hydrodynamical model and is found to be powered by a combination of internal energy leakage after the explosion of an extended pre-SN (~1015cm) and subsequent luminosity from CS interaction. The pre-explosion kinematics of the CS envelope is recovered, and is close to homologous expansion with outer velocity ~1100kms-1 and a kinematic age of ~1.5yr. The high mass (~0.4Msolar) and kinetic energy (~2 × 1048erg) of the CS envelope, combined with low age, strongly suggest that the CS envelope was explosively ejected ~1.5yr prior to the SN explosion.
  •  
2.
  • Michael, Eli, et al. (författare)
  • Hubble Space Telescope Observations of High-Velocity Lyα and Hα Emission from Supernova Remnant 1987A : The Structure and Development of the Reverse Shock
  • 2003
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 593, s. 809-830
  • Tidskriftsartikel (refereegranskat)abstract
    • We present two-dimensional line profiles of high-velocity (~+/-12,000 km s-1) Lyα and Hα emission from supernova remnant 1987A obtained with the Space Telescope Imaging Spectrograph between 1997 September and 2001 September (days 3869-5327 after the explosion). This emission comes from hydrogen in the debris that is excited and ionized as it passes through the remnant's reverse shock. We use these profiles to measure the geometry and development of the reverse-shock surface. The observed emission is confined within ~+/-30° about the remnant's equatorial plane. At the equator, the reverse shock has a radius of ~75% of the distance to the equatorial ring. We detect marginal differences (6%+/-3%) between the location of the reverse-shock front in the northeast and southwest parts of the remnant. The radius of the reverse shock surface increases for latitudes above the equator, a geometry consistent with a model in which the supernova debris expands into a bipolar nebula. Assuming that the outer supernova debris has a power-law density distribution, we can infer from the reverse-shock emission light curve an expansion rate (in the northeast part of the remnant) of 3700+/-900kms-1, consistent with the expansion velocities determined from observations in radio (Manchester et al.) and X-ray (Park et al.; Michael et al.) wavelengths. However, our most recent observation (at day 5327) suggests that the rate of increase of mass flux across the northeast sector of the reverse shock has accelerated, perhaps because of deceleration of the reverse shock caused by the arrival of a reflected shock created when the blast wave struck the inner ring. Resonant scattering within the supernova debris causes Lyα photons created at the reverse shock to be directed preferentially outward, resulting in a factor of ~5 difference in the observed brightness of the reverse shock in Lyα between the near and far sides of the remnant. Accounting for this effect, we compare the observed reverse-shock Lyα and Hα fluxes to infer the amount of interstellar extinction by dust as E(B-V)=0.17+/-0.01 mag. We also notice extinction by dust in the equatorial ring with E(B-V)~0.02-0.08 mag, which implies dust-to-gas ratios similar to that of the LMC. Since Hα photons are optically thin to scattering, the observed asymmetry in brightness of Hα from the near and far sides of the remnant represents a real asymmetry in the mass flux through the reverse shock of ~30%. We discuss future observational strategies that will permit us to further investigate the reverse-shock dynamics and resonant scattering of the Lyα line and to constrain better the extinction by dust within and in front of the remnant.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy