SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Finnilä Mikko A J) srt2:(2022)"

Sökning: WFRF:(Finnilä Mikko A J) > (2022)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Finnilä, Mikko A J, et al. (författare)
  • Mineral Crystal Thickness in Calcified Cartilage and Subchondral Bone in Healthy and Osteoarthritic Human Knees
  • 2022
  • Ingår i: Journal of Bone and Mineral Research. - : Wiley. - 1523-4681 .- 0884-0431. ; 37:9, s. 1700-1710
  • Tidskriftsartikel (refereegranskat)abstract
    • Osteoarthritis (OA) is the most common joint disease, where articular cartilage degradation is often accompanied with sclerosis of the subchondral bone. However, the association between OA and tissue mineralization at the nanostructural level is currently not understood. In particular, it is technically challenging to study calcified cartilage, where relevant but poorly understood pathological processes such as tidemark multiplication and advancement occur. Here, we used state-of-the-art microfocus small-angle X-ray scattering with a 5-μm spatial resolution to determine the size and organization of the mineral crystals at the nanostructural level in human subchondral bone and calcified cartilage. Specimens with a wide spectrum of OA severities were acquired from both medial and lateral compartments of medial compartment knee OA patients (n = 15) and cadaver knees (n = 10). Opposing the common notion, we found that calcified cartilage has thicker and more mutually aligned mineral crystals than adjoining bone. In addition, we, for the first time, identified a well-defined layer of calcified cartilage associated with pathological tidemark multiplication, containing 0.32 nm thicker crystals compared to the rest of calcified cartilage. Finally, we found 0.2 nm thicker mineral crystals in both tissues of the lateral compartment in OA compared with healthy knees, indicating a loading-related disease process because the lateral compartment is typically less loaded in medial compartment knee OA. In summary, we report novel changes in mineral crystal thickness during OA. Our data suggest that unloading in the knee might be involved with the growth of mineral crystals, which is especially evident in the calcified cartilage.
  •  
2.
  • Ebrahimi, Mohammadhossein, et al. (författare)
  • Associations of human femoral condyle cartilage structure and composition with viscoelastic and constituent-specific material properties at different stages of osteoarthritis
  • 2022
  • Ingår i: Journal of Biomechanics. - : Elsevier BV. - 0021-9290. ; 145
  • Tidskriftsartikel (refereegranskat)abstract
    • The relationships between structure and function in human knee femoral cartilage are not well-known at different stages of osteoarthritis. Thus, our aim was to characterize the depth-dependent composition and structure (proteoglycan content, collagen network organization and collagen content) of normal and osteoarthritic human femoral condyle cartilage (n = 47) and relate them to their viscoelastic and constituent-specific mechanical properties that are obtained through dynamic sinusoidal testing and fibril-reinforced poroelastic material modeling of stress-relaxation testing, respectively. We characterized the proteoglycan content using digital densitometry, collagen network organization (orientation angle and anisotropy) using polarized light microscopy and collagen content using Fourier transform infrared spectroscopy. In the superficial cartilage (0–10 % of thickness), the collagen network disorganization and proteoglycan loss were associated with the smaller initial fibril network modulus - a parameter representing the pretension of the collagen network. Furthermore, the proteoglycan loss was associated with the greater strain-dependent fibril network modulus - a measure of nonlinear mechanical behavior. The proteoglycan loss was also associated with greater cartilage viscosity at a low loading frequency (0.005 Hz), while the collagen network disorganization was associated with greater cartilage viscosity at a high loading frequency (1 Hz). Our results suggest that proteoglycan loss and collagen network disorganization reduce the pretension of the collagen network while proteoglycan degradation also increases the nonlinear mechanical behavior of the collagen network. Further, the results also highlight that proteoglycan loss and collagen disorganization increase the viscosity of femoral cartilage, but their contribution to increased viscosity occurs in completely different loading frequencies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy