SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fitzgerald Gerald) srt2:(2010)"

Sökning: WFRF:(Fitzgerald Gerald) > (2010)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Marques, Tatiana Milena, et al. (författare)
  • Programming infant gut microbiota : influence of dietary and environmental factors
  • 2010
  • Ingår i: Current Opinion in Biotechnology. - Oxford, United Kingdom : Elsevier. - 0958-1669 .- 1879-0429. ; 21:2, s. 149-156
  • Forskningsöversikt (refereegranskat)abstract
    • The neonatal period is crucial for intestinal colonisation, and the composition of this ecosystem in early life is influenced by such factors as mode of birth, environment, diet and antibiotics. The intestinal microbiota contributes to protection against pathogens, maturation of the immune system and metabolic welfare of the host, but under some circumstances can contribute to the pathogenesis of certain diseases. Because colonisation with non-pathogenic microbiota is important for infant health and may affect health in later life, it is important to understand how the composition of this microbial organ is established and by which dietary means (e.g. supplementation with prebiotics/probiotics/food ingredients) it can be programmed in order to achieve an ecosystem that is valuable for the host.
  •  
2.
  • Wall, Rebecca, 1979-, et al. (författare)
  • Fatty acids from fish : the anti-inflammatory potential of long-chain omega-3 fatty acids.
  • 2010
  • Ingår i: Nutrition reviews. - Malden, USA : Wiley-Blackwell. - 0029-6643 .- 1753-4887. ; 68:5, s. 280-289
  • Tidskriftsartikel (refereegranskat)abstract
    • Omega-6 (n-6) and omega-3 (n-3) polyunsaturated fatty acids (PUFA) are precursors of potent lipid mediators, termed eicosanoids, which play an important role in the regulation of inflammation. Eicosanoids derived from n-6 PUFAs (e.g., arachidonic acid) have proinflammatory and immunoactive functions, whereas eicosanoids derived from n-3 PUFAs [e.g., eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] have anti-inflammatory properties, traditionally attributed to their ability to inhibit the formation of n-6 PUFA-derived eicosanoids. While the typical Western diet has a much greater ratio of n-6 PUFAs compared with n-3 PUFAs, research has shown that by increasing the ratio of n-3 to n-6 fatty acids in the diet, and consequently favoring the production of EPA in the body, or by increasing the dietary intake of EPA and DHA through consumption of fatty fish or fish-oil supplements, reductions may be achieved in the incidence of many chronic diseases that involve inflammatory processes; most notably, these include cardiovascular diseases, inflammatory bowel disease (IBD), cancer, and rheumatoid arthritis, but psychiatric and neurodegenerative illnesses are other examples.
  •  
3.
  • Wall, Rebecca, 1979-, et al. (författare)
  • Impact of administered bifidobacterium on murine host fatty acid composition
  • 2010
  • Ingår i: Lipids. - Heidelberg, Germany : Springer. - 0024-4201 .- 1558-9307. ; 45:5, s. 429-436
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, we reported that administration of Bifidobacteria resulted in increased concentrations of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in murine adipose tissue [1]. The objective of this study was to assess the impact of co-administration of Bifidobacterium breve NCIMB 702258 and the substrate for EPA, alpha-linolenic acid, on host fatty acid composition. alpha-Linolenic acid-supplemented diets (1%, wt/wt) were fed to mice (n = 8), with or without B. breve NCIMB 702258 (daily dose of 10(9) microorganisms) for 8 weeks. Two further groups received either supplement of B. breve alone or unsupplemented diet. Tissue fatty acid composition was assessed by gas liquid chromatography. Dietary supplementation of alpha-linolenic acid resulted in higher (P < 0.05) alpha-linolenic acid and EPA concentrations in liver and adipose tissue and lower (P < 0.05) arachidonic acid in liver, adipose tissue and brain compared with mice that did not receive alpha-linolenic acid. Supplementation with B. breve NCIMB 702258 in combination with alpha-linolenic acid resulted in elevated (P < 0.05) liver EPA concentrations compared with alpha-linolenic acid supplementation alone. Furthermore, the former group had higher (P < 0.05) DHA in brain compared with the latter group. These results suggest a role for interactions between fatty acids and commensals in the gastrointestinal tract. This interaction between administered microbes and fatty acids could result in a highly effective nutritional approach to the therapy of a variety of inflammatory and neurodegenerative conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy