SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Folkers Laura C.) srt2:(2020)"

Sökning: WFRF:(Folkers Laura C.) > (2020)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kim, Jae-Young, et al. (författare)
  • Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 640
  • Tidskriftsartikel (refereegranskat)abstract
    • 3C 279 is an archetypal blazar with a prominent radio jet that show broadband flux density variability across the entire electromagnetic spectrum. We use an ultra-high angular resolution technique - global Very Long Baseline Interferometry (VLBI) at 1.3mm (230 GHz) - to resolve the innermost jet of 3C 279 in order to study its fine-scale morphology close to the jet base where highly variable-ray emission is thought to originate, according to various models. The source was observed during four days in April 2017 with the Event Horizon Telescope at 230 GHz, including the phased Atacama Large Millimeter/submillimeter Array, at an angular resolution of ∼20 μas (at a redshift of z = 0:536 this corresponds to ∼0:13 pc ∼ 1700 Schwarzschild radii with a black hole mass MBH = 8 × 108 M⊙). Imaging and model-fitting techniques were applied to the data to parameterize the fine-scale source structure and its variation.We find a multicomponent inner jet morphology with the northernmost component elongated perpendicular to the direction of the jet, as imaged at longer wavelengths. The elongated nuclear structure is consistent on all four observing days and across diffierent imaging methods and model-fitting techniques, and therefore appears robust. Owing to its compactness and brightness, we associate the northern nuclear structure as the VLBI "core". This morphology can be interpreted as either a broad resolved jet base or a spatially bent jet.We also find significant day-to-day variations in the closure phases, which appear most pronounced on the triangles with the longest baselines. Our analysis shows that this variation is related to a systematic change of the source structure. Two inner jet components move non-radially at apparent speeds of ∼15 c and ∼20 c (∼1:3 and ∼1:7 μas day-1, respectively), which more strongly supports the scenario of traveling shocks or instabilities in a bent, possibly rotating jet. The observed apparent speeds are also coincident with the 3C 279 large-scale jet kinematics observed at longer (cm) wavelengths, suggesting no significant jet acceleration between the 1.3mm core and the outer jet. The intrinsic brightness temperature of the jet components are ≤1010 K, a magnitude or more lower than typical values seen at ≥7mm wavelengths. The low brightness temperature and morphological complexity suggest that the core region of 3C 279 becomes optically thin at short (mm) wavelengths.
  •  
2.
  • Folkers, Laura C., et al. (författare)
  • Entropy-Driven Incommensurability : Chemical Pressure-Guided Polymorphism in PdBi and the Origins of Lock-In Phenomena in Modulated Systems
  • 2020
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 59:7, s. 4936-4949
  • Tidskriftsartikel (refereegranskat)abstract
    • Incommensurate order, in which two or more mismatched periodic patterns combine to make a long-range ordered yet aperiodic structure, is emerging as a general phenomenon impacting the crystal structures of compounds ranging from alloys and nominally simple salts to organic molecules and proteins. The origins of incommensurability in these systems are often unclear, but it is commonly associated with relatively weak interactions that become apparent only at low temperatures. In this article, we elucidate an incommensurate modulation in the intermetallic compound PdBi that arises from a different mechanism: the controlled increase of entropy at higher temperatures. Following the synthesis of PdBi, we structurally characterize two low-temperature polymorphs of the TlI-type structure with single crystal synchrotron X-ray diffraction. At room temperature, we find a simple commensurate superstructure of the TlI-type structure (comm-PdBi), in which the Pd sublattice distorts to form a 2D pattern of short and long Pd-Pd contacts. Upon heating, the structure converts to an incommensurate variant (incomm-PdBi) corresponding to the insertion of thin slabs of the original TlI type into the superstructure. Theoretical bonding analysis suggests that comm-PdBi is driven by the formation of isolobal Pd-Pd bonds along shortened contacts in the distorted Pd network, which is qualitatively in accord with the 18-n rule but partially frustrated by the population of competing Bi-Bi bonding states. The emergence of incomm-PdBi upon heating is rationalized with the DFT-Cemical Pressure (CP) method: the insertion of TlI-type slabs result in regions of higher vibrational freedom that are entropically favored at higher temperatures. High-temperature incommensurability may be encountered in other materials when bond formation is weakened by competing electronic states, and there is a path for accommodating defects in the CP scheme.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy