SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Forsby Anna) srt2:(2020-2024)"

Sökning: WFRF:(Forsby Anna) > (2020-2024)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Forsby, Mathilda, 1993, et al. (författare)
  • Nutritional intake and determinants of nutritional quality changes from pregnancy to postpartum—a longitudinal study
  • 2024
  • Ingår i: Food Science and Nutrition. - 2048-7177. ; 12:2, s. 1245-1256
  • Tidskriftsartikel (refereegranskat)abstract
    • Nutrient requirements vary across the reproductive cycle, but research on changes in nutritional intake and quality from pregnancy to beyond the lactation period is limited. Thus, we aimed to study nutritional intake and quality changes, among Swedish pregnant participants from late pregnancy to 18 months postpartum and to study the determinants of nutritional quality changes. Participants (n = 72) were studied longitudinally from the third trimester of pregnancy and postpartum (2 weeks 4, 12, and 18 months postpartum). At each visit, participant characteristics and 4-day food diaries were collected. Nutritional quality was assessed by energy adjusted Nutrient Rich Food Index 11.3. Linear mixed models were used to analyze the determinants of change in nutritional quality. Intakes of carbohydrate energy percentage (E%), fiber, vitamin A, vitamin C, and potassium were higher in the third trimester compared to postpartum, whereas intakes of E% protein and monounsaturated fat were lower. Adherence to recommended intakes was low at all study visits for saturated fat (4%–11%), fiber (15%–39%), vitamin D (8%–14%), folate (0%–2%), and iron (6%–21%). Overall, nutritional quality did not differ significantly from third trimester to postpartum. Shorter duration (<4 months) of lactation was negatively related to nutritional quality changes, whereas higher age was positively related to changes. In conclusion, nutritional intake from pregnancy to postpartum changed, whereas quality remained relatively stable, with age and lactation duration as determinants. Identification of people at risk of adverse dietary changes from pregnancy to the postpartum period should be further addressed in future larger and more diverse study populations.
  •  
2.
  • Krebs, Alice, et al. (författare)
  • The EU-ToxRisk method documentation, data processing and chemical testing pipeline for the regulatory use of new approach methods
  • 2020
  • Ingår i: Archives of Toxicology. - : Springer Science and Business Media LLC. - 0340-5761 .- 1432-0738. ; 94:7, s. 2435-2461
  • Tidskriftsartikel (refereegranskat)abstract
    • Hazard assessment, based on new approach methods (NAM), requires the use of batteries of assays, where individual tests may be contributed by different laboratories. A unified strategy for such collaborative testing is presented. It details all procedures required to allow test information to be usable for integrated hazard assessment, strategic project decisions and/or for regulatory purposes. The EU-ToxRisk project developed a strategy to provide regulatorily valid data, and exemplified this using a panel of > 20 assays (with > 50 individual endpoints), each exposed to 19 well-known test compounds (e.g. rotenone, colchicine, mercury, paracetamol, rifampicine, paraquat, taxol). Examples of strategy implementation are provided for all aspects required to ensure data validity: (i) documentation of test methods in a publicly accessible database; (ii) deposition of standard operating procedures (SOP) at the European Union DB-ALM repository; (iii) test readiness scoring accoding to defined criteria; (iv) disclosure of the pipeline for data processing; (v) link of uncertainty measures and metadata to the data; (vi) definition of test chemicals, their handling and their behavior in test media; (vii) specification of the test purpose and overall evaluation plans. Moreover, data generation was exemplified by providing results from 25 reporter assays. A complete evaluation of the entire test battery will be described elsewhere. A major learning from the retrospective analysis of this large testing project was the need for thorough definitions of the above strategy aspects, ideally in form of a study pre-registration, to allow adequate interpretation of the data and to ensure overall scientific/toxicological validity.
  •  
3.
  • Attoff, Kristina, et al. (författare)
  • Acrylamide alters CREB and retinoic acid signalling pathways during differentiation of the human neuroblastoma SH-SY5Y cell line
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Acrylamide (ACR) is a known neurotoxicant which crosses the blood-brain barrier, passes the placenta and has been detected in breast milk. Hence, early-life exposure to ACR could lead to developmental neurotoxicity. The aim of this study was to elucidate if non-cytotoxic concentrations of ACR alter neuronal differentiation by studying gene expression of markers significant for neurodevelopment in the human neuroblastoma SH-SY5Y cell model. Firstly, by using RNASeq we identified two relevant pathways that are activated during 9 days of retinoic acid (RA) induced differentiation i.e. RA receptor (RAR) activation and the cAMP response element-binding protein (CREB) signalling pathways. Next, by qPCR we showed that 1 and 70 mu M ACR after 9 days exposure alter the expression of 13 out of 36 genes in the RAR activation pathway and 18 out of 47 in the CREB signalling pathway. Furthermore, the expression of established neuronal markers i.e. BDNF, STXBP2, STX3, TGFB1 and CHAT were down-regulated. Decreased protein expression of BDNF and altered ratio of phosphorylated CREB to total CREB were confirmed by western blot. Our results reveal that micromolar concentrations of ACR sustain proliferation, decrease neurite outgrowth and interfere with signalling pathways involved in neuronal differentiation in the SH-SY5Y cell model.
  •  
4.
  • Carta, Giada, et al. (författare)
  • Transcriptional landscape of mitochondrial electron transport chain inhibition in renal cells
  • 2023
  • Ingår i: Cell Biology and Toxicology. - 0742-2091 .- 1573-6822. ; 39, s. 3031-3059
  • Tidskriftsartikel (refereegranskat)abstract
    • Analysis of the transcriptomic alterations upon chemical challenge, provides in depth mechanistic information on the compound’s toxic mode of action, by revealing specific pathway activation and other transcriptional modulations. Mapping changes in cellular behaviour to chemical insult, facilitates the characterisation of chemical hazard. In this study, we assessed the transcriptional landscape of mitochondrial impairment through the inhibition of the electron transport chain (ETC) in a human renal proximal tubular cell line (RPTEC/TERT1). We identified the unfolded protein response pathway (UPR), particularly the PERK/ATF4 branch as a common cellular response across ETC I, II and III inhibitions. This finding and the specific genes elaborated may aid the identification of mitochondrial liabilities of chemicals in both legacy data and prospective transcriptomic studies.
  •  
5.
  • Cediel Ulloa, Andrea, et al. (författare)
  • Methylmercury-induced DNA methylation—From epidemiological observations to experimental evidence
  • 2022
  • Ingår i: Frontiers in Genetics. - : Frontiers Media SA. - 1664-8021. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Methylmercury (MeHg) is a developmental neurotoxicant, and one potential mechanism of MeHg toxicity is epigenetic dysregulation. In a recent meta-analysis of epigenome-wide association studies (EWAS), associations between prenatal MeHg exposure and DNA methylation at several genomic sites were identified in blood from newborns and children. While EWASs reveal human-relevant associations, experimental studies are required to validate the relationship between exposure and DNA methylation changes, and to assess if such changes have implications for gene expression. Herein, we studied DNA methylation and gene expression of five of the top genes identified in the EWAS meta-analysis, MED31, MRPL19, GGH, GRK1, and LYSMD3, upon MeHg exposure in human SH-SY5Y cells exposed to 8 or 40 nM of MeHg during differentiation, using bisulfite-pyrosequencing and qPCR, respectively. The concentrations were selected to cover the range of MeHg concentrations in cord blood (2–8.5 μg/L) observed in the cohorts included in the EWAS. Exposure to MeHg increased DNA methylation at MED31, a transcriptional regulator essential for fetal development. The results were in concordance with the epidemiological findings where more MED31 methylation was associated with higher concentrations of MeHg. Additionally, we found a non-significant decrease in DNA methylation at GGH, which corresponds to the direction of change observed in the EWAS, and a significant correlation of GGH methylation with its expression. In conclusion, this study corroborates some of the EWAS findings and puts forward candidate genes involved in MeHg’s effects on the developing brain, thus highlighting the value of experimental validation of epidemiological association studies.
  •  
6.
  • Delp, Johannes, et al. (författare)
  • Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors
  • 2021
  • Ingår i: Archives of Toxicology. - : Springer. - 0340-5761 .- 1432-0738. ; 95:2, s. 591-615
  • Tidskriftsartikel (refereegranskat)abstract
    • Inhibition of complex I of the mitochondrial respiratory chain (cI) by rotenone and methyl-phenylpyridinium (MPP +) leads to the degeneration of dopaminergic neurons in man and rodents. To formally describe this mechanism of toxicity, an adverse outcome pathway (AOP:3) has been developed that implies that any inhibitor of cI, or possibly of other parts of the respiratory chain, would have the potential to trigger parkinsonian motor deficits. We used here 21 pesticides, all of which are described in the literature as mitochondrial inhibitors, to study the general applicability of AOP:3 or of in vitro assays that are assessing its activation. Five cI, three complex II (cII), and five complex III (cIII) inhibitors were characterized in detail in human dopaminergic neuronal cell cultures. The NeuriTox assay, examining neurite damage in LUHMES cells, was used as in vitro proxy of the adverse outcome (AO), i.e., of dopaminergic neurodegeneration. This test provided data on whether test compounds were unspecific cytotoxicants or specifically neurotoxic, and it yielded potency data with respect to neurite degeneration. The pesticide panel was also examined in assays for the sequential key events (KE) leading to the AO, i.e., mitochondrial respiratory chain inhibition, mitochondrial dysfunction, and disturbed proteostasis. Data from KE assays were compared to the NeuriTox data (AO). The cII-inhibitory pesticides tested here did not appear to trigger the AOP:3 at all. Some of the cI/cIII inhibitors showed a consistent AOP activation response in all assays, while others did not. In general, there was a clear hierarchy of assay sensitivity: changes of gene expression (biomarker of neuronal stress) correlated well with NeuriTox data; mitochondrial failure (measured both by a mitochondrial membrane potential-sensitive dye and a respirometric assay) was about 10-260 times more sensitive than neurite damage (AO); cI/cIII activity was sometimes affected at > 1000 times lower concentrations than the neurites. These data suggest that the use of AOP:3 for hazard assessment has a number of caveats: (i) specific parkinsonian neurodegeneration cannot be easily predicted from assays of mitochondrial dysfunction; (ii) deriving a point-of-departure for risk assessment from early KE assays may overestimate toxicant potency.
  •  
7.
  • Forsby, Mathilda, 1993, et al. (författare)
  • Supplement use in relation to dietary intake in pregnancy: an analysis of the Swedish GraviD cohort.
  • 2024
  • Ingår i: The British journal of nutrition. - 1475-2662. ; 131:2, s. 256-264
  • Tidskriftsartikel (refereegranskat)abstract
    • We aimed to study supplement use in relation to dietary intake among pregnant women in Sweden, and adherence to the Nordic Nutrition Recommendations among supplement and non-supplement users. Pregnant women were recruited at registration to antenatal care in 2013–2014. In third trimester, supplement use was collected using a questionnaire, and dietary intake was collected using a FFQ. The majority (64 %) of the 1044 women reported use of one or more supplements. Among all, 0–23 % reported dietary intakes above recommended intake (RI) of vitamin D, folate, Fe and Se. Median dietary intakes of thiamine (1·4 v. 1·3 mg P = 0·013), phosphorus (1482 v. 1440 mg P = 0·007), folate (327 v. 316 µg P = 0·02), Fe (12 v. 11·5 mg P = 0·009), Mg (361 v. 346 mg P < 0·001) and Zn (10·7 v. 10·4 mg P = 0·01) were higher among supplement users compared with non-users. Larger proportions of supplement users than non-users adhered to RI of dietary intakes of thiamine (42 % v. 35 % P = 0·04) and Mg (75 % v. 69 % P = 0·05). Among non-users, a minority had dietary intakes above RI for vitamin D (6 %), folate (10 %) and Fe (21 %). The majority (75–100 %) of supplement users had total intakes above RI for most nutrients. In conclusion, supplement use contributed substantially to reaching RI for vitamin D, folate and Fe. Supplement users had a higher dietary intake of several nutrients than non-users. This highlights that non-supplement users are at risk of inadequate nutrient intakes during pregnancy, suggesting a need for heightened awareness of nutritional adequacy for pregnant women.
  •  
8.
  • Hinojosa, Maria G., et al. (författare)
  • Effects of cylindrospermopsin, chlorpyrifos and their combination in a SH-SY5Y cell model concerning developmental neurotoxicity
  • 2024
  • Ingår i: Ecotoxicology and Environmental Safety. - 0147-6513 .- 1090-2414. ; 269
  • Tidskriftsartikel (refereegranskat)abstract
    • The cyanotoxin cylindrospermopsin (CYN) has been postulated to cause neurotoxicity, although the studies in this concern are very few. In addition, some studies in vitro indicate its possible effects on development. Furthermore, pesticides can be present in the same environmental samples as cyanotoxins. Therefore, chlor-pyrifos (CPF) has been one of the most common pesticides used worldwide. The aim of this report was to study the effects of CYN, isolated and in combination with CPF, in a developmental neurotoxicity in vitro model. The human neuroblastoma SH-SY5Y cell line was exposed during 6 days of differentiation to both toxics to study their effects on cell viability and neurite outgrowth. To further evaluate effects of both toxicants on cholinergic signaling, their agonistic and antagonistic activities on the alpha 7 homomeric nicotinic acetylcholine receptor (nAChR) were studied upon acute exposure. Moreover, a transcriptomic analysis by qPCR was performed after 6 days of CYN-exposure during differentiation. The results showed a concentration-dependent decrease on both cell viability and neurite outgrowth for both toxics isolated, leading to effective concentration 20 (EC20) values of 0.35 mu M and 0.097 mu M for CYN on cell viability and neurite outgrowth, respectively, and 100 mu M and 58 mu M for CPF, while the combination demonstrated no significant variations. In addition, 95 mu M and 285 mu M CPF demonstrated to act as an antagonist to nicotine on the nAChR, although CYN up to 2.4 mu M had no effect on the efficacy of these receptors. Additionally, the EC20 for CYN (0.097 mu M) on neurite outgrowth downregulated expression of the 5 genes NTNG2 (netrin G2), KCNJ11 (potassium channel), SLC18A3 (vesicular acetylcholine transporter), APOE (apolipoprotein E), and SEMA6B (semaphorin 6B), that are all important for neuronal development. Thus, this study points out the importance of studying the effects of CYN in terms of neurotoxicity and developmental neurotoxicity.
  •  
9.
  • Johansson, Ylva, 1993-, et al. (författare)
  • Attenuated neuronal differentiation caused by acrylamide is not related to oxidative stress in differentiated human neuroblastoma SH-SY5Y cells
  • 2024
  • Ingår i: Food and Chemical Toxicology. - 0278-6915 .- 1873-6351. ; 187
  • Tidskriftsartikel (refereegranskat)abstract
    • Acrylamide (ACR) is a known neurotoxicant and developmental neurotoxicant. As a soft electrophile, ACR reacts with thiol groups in cysteine. One hypothesis of ACR induced neurotoxicity and developmental neurotoxicity (DNT) is conjugation with reduced glutathione (GSH) leading to GSH depletion, increased reactive oxygen species (ROS) production and further oxidative stress and cellular damage. In this regard, we have investigated the effect of ACR on neuronal differentiation, glutathione levels and ROS production in the human neuroblastoma SH-SY5Y cell model. After 9 days of differentiation and exposure, ACR significantly impaired area neurites per cell at non-cytotoxic concentrations (0.33 μM and 10 μM). Furthermore, 10 μM ACR dysregulated 9 mRNA markers important for neuronal development, 5 of them being associated with cytoskeleton organization and axonal guidance. At the non-cytotoxic concentrations that significantly attenuate neuronal differentiation, ACR did neither decrease the level of GSH or total glutathione levels, nor increased ROS production. In addition, the expression of 5 mRNA markers for cellular stress was assessed with no significant altered regulation after ACR exposure up to 320 μM. Thus, ACR-induced DNT is not due to GSH depletion and increased ROS production, neither at non-cytotoxic nor cytotoxic concentrations, in the SH-SH5Y model during differentiation.
  •  
10.
  • Lindeman, Birgitte, et al. (författare)
  • Does the food processing contaminant acrylamide cause developmental neurotoxicity? A review and identification of knowledge gaps
  • 2021
  • Ingår i: Reproductive Toxicology. - : Elsevier BV. - 0890-6238 .- 1873-1708. ; 101, s. 93-114
  • Forskningsöversikt (refereegranskat)abstract
    • There is a worldwide concern on adverse health effects of dietary exposure to acrylamide (AA) due to its presence in commonly consumed foods. AA is formed when carbohydrate rich foods containing asparagine and reducing sugars are prepared at high temperatures and low moisture conditions. Upon oral intake, AA is rapidly absorbed and distributed to all organs. AA is a known human neurotoxicant that can reach the developing foetus via placental transfer and breast milk. Although adverse neurodevelopmental effects have been observed after prenatal AA exposure in rodents, adverse effects of AA on the developing brain has so far not been studied in humans. However, epidemiological studies indicate that gestational exposure to AA impair foetal growth and AA exposure has been associated with reduced head circumference of the neonate. Thus, there is an urgent need for further research to elucidate whether pre- and perinatal AA exposure in humans might impair neurodevelopment and adversely affect neuronal function postnatally. Here, we review the literature with emphasis on the identification of critical knowledge gaps in relation to neurodevelopmental toxicity of AA and its mode of action and we suggest research strategies to close these gaps to better protect the unborn child.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy