SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fröjdh Christer 1952 ) srt2:(2015-2019)"

Sökning: WFRF:(Fröjdh Christer 1952 ) > (2015-2019)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dreier, Till, et al. (författare)
  • A USB 3.0 readout system for Timepix3 detectors with on-board processing capabilities
  • 2018
  • Ingår i: Journal of Instrumentation. - 1748-0221. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Timepix3 is a high-speed hybrid pixel detector consisting of a 256 x 256 pixel matrix with a maximum data rate of up to 5.12 Gbps (80 MHit/s). The ASIC is equipped with eight data channels that are data driven and zero suppressed making it suitable for particle tracking and spectral imaging.In this paper, we present a USB 3.0-based programmable readout system with online preprocessing capabilities. USB 3.0 is present on all modern computers and can, under real-world conditions, achieve around 320MB/s, which allows up to 40 MHit/s of raw pixel data. With on-line processing, the proposed readout system is capable of achieving higher transfer rate (approaching Timepix4) since only relevant information rather than raw data will be transmitted. The system is based on an Opal Kelly development board with a Spartan 6 FPGA providing a USB 3.0 interface between FPGA and PC via an FX3 chip. It connects to a CERN T imepix 3 chipboard with standard VHDCI connector via a custom designed mezzanine card. The firmware is structured into blocks such as detector interface, USB interface and system control and an interface for data pre-processing. On the PC side, a Qt/C++ multi-platformsoftware library is implemented to control the readout system, providing access to detector functions and handling high-speed USB 3.0 streaming of data from the detector.We demonstrate equalisation, calibration and data acquisition using a Cadmium Telluride sensor and optimise imaging data using simultaneous ToT (Time-over-Threshold) and ToA (Timeof- Arrival) information. The presented readout system is capable of other on-line processing such as analysis and classification of nuclear particles with current or larger FPGAs.
  •  
2.
  • Fröjdh, Christer, 1952-, et al. (författare)
  • Precision scan-imaging for paperboard quality inspection utilizing X-ray fluorescence
  • 2018
  • Ingår i: Journal of Instrumentation. - : Institute of Physics Publishing. - 1748-0221. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Paperboard is typically made up of a core of cellulose fibers [C6H10O5] and a coating layer of [CaCO3]. The uniformity of these layers is a critical parameter for the printing quality. Current quality control methods include chemistry based visual inspection methods as well as X-ray based methods to measure the coating thickness. In this work we combine the X-ray fluorescence signals from the Ca atoms (3.7 keV) in the coating and from a Cu target (8.0 keV) placed behind the paper to simultaneously measure both the coating and the fibers. Cu was selected as the target material since its fluorescence signal is well separated from the Ca signal while its fluorescence's still are absorbed sufficiently in the paper. A laboratory scale setup is built using stepper motors, a silicon drift detector based spectrometer and a collimated X-ray beam. The spectroscopic image is retrieved by scanning the paperboard surface and registering the fluorescence signals from Ca and Cu. The exposure time for this type of setups can be significantly improved by implementing spectroscopic imaging sensors. The material contents in the layers can then be retrieved from the absolute and relative intensities of these two signals.
  •  
3.
  • Norlin, Börje, 1967-, et al. (författare)
  • X-ray fluorescence measurements of toxic metal content in ash from municipal solid waste incineration
  • 2017
  • Ingår i: 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD). - : IEEE. - 9781509016426
  • Konferensbidrag (refereegranskat)abstract
    • The vision of this paper is development of an online X-ray fluorescence method for monitoring of metal content in ash from municipal solid waste (MSW) incineration. With such measurements directly on site it is possible to optimize an ash washing process in incineration plants, allowing the fly ash to be stored in a landfill for non-hazardous waste. The presented X-ray fluorescence measurement assures that the measurement accuracy is sufficient for metal content monitoring. The actual measurement process is also fast enough to be possible to implement as an online measurement method. The optimal measurement setup is different for different metals. Several different metals might need environmental monitoring, which metals might vary over time due to systematic variations in waist content. Detection of a wide range of metals will require an X-ray source with variable voltage and multiple detectors.
  •  
4.
  • Rahman, Hafizur, Research Engineer, 1978-, et al. (författare)
  • Maximized wood chip impregnation efficiency validated by new miniaturized X-ray fluorescence techniques
  • 2019
  • Konferensbidrag (refereegranskat)abstract
    • Manufacturing of chemi-thermomechanical pulp (CTMP) is increasing due to increased demand for packaging materials such as cardboard as well as tissue and other hygiene products. Today high yield pulp (HYP) is produced from different wood species. It is well-known that chip-refining is normally responsible for more than 60% of the electric energy consumption in most high yield pulping process. There are opportunities to improve energy efficiency and quality stability in defibration processes by means of optimizing impregnation. Impregnation is a key unit operation in CTMP production as well as in all chemical pulping and biorefinery systems. The efficiency of the impregnation is known to be crucial (Ferritsius et al. 1985; Gorski et al. 2010). Early research showed difficulties to achieve even distribution of sulphite and sodium ions in wood chips resulting in inhomogeneous fibre properties (Bengtsson et al. 1988). Increased and homogenous sulphonation leads to reduced shive content, which is a key factor in all end product applications. To address this issue developing a new type miniaturized X-ray based technique (XRF) to measure local concentration of sulphur and sodium across wood chips and in individual fibres could become a key tool. The presence of elements as sulphur and sodium can be detected by X-ray fluorescence (XRF) or spectral absorption. At the XRF, images the surface of the sample using specific energies from K-shell or L-shell fluorescence. This method is investigated at the X-ray laboratory in Mid Sweden University research centre STC (Sensitive Things that Communicate) (Norlin et al. 2018). At the spectral absorption, images specific K-shell absorption energies in transmission X-ray images of the sample, a method widely used in medical diagnosis. This transmission method might also be further investigated for this application in the future (Frojdh et al. 2013; Reza et al. 2013). Both methods can be validated by using monoenergetic radiation from synchrotron facilities. An XRF imaging system uses a collimated X-ray source and a spectroscopic detector. The sample is scanned to make an image of the content of the substances of interest. A specific challenge in this case is that the low energy fluorescence photons from sulphur (S) and sodium (Na) are easily absorbed in air, which makes imaging in a different atmosphere necessary. The measurement setup has been simulated using MCNP (C. J. Werner, 2017) to validate the system setup and to select the correct, geometry, shielding, filtering and atmosphere for the measurement. The solution was to use a titanium box flooded with helium to minimise the absorption of fluorescence photons and to shield from scattered photons that might disturb the measurement, fig 1. A filter has been added to the X-ray source to make it nearly monoenergetic and to avoid emission of photons with energies close to the expected fluorescence. The system has been used to estimate sodium and sulphur content in low grammage handsheet (CTMP) or single wood chip samples. It is possible to build a laboratory instrument similar to the prototype setup to obtain the distribution of sodium and sulphur in XRF imaging.                 Figure 1: Photograph of XRF measurement setup with of moveable Helium atmosphere Ti boxHowever, the technique we are developing can become useful in mills to improve and control process efficiency, product properties and to find solutions to process problems in future. In addition, a more even distribution of the sulphonation can reduce specific energy demand in chip refining at certain shive content. References 1.      Bengtsson, G., Simonson, R., Heitner, C., Beatson, R., and Ferguson, C. (1988): Chemimechanical pulping of birch wood chips, Part 2: Studies on impregnation of wood blocks using scanning electron microscopy and energy dispersive x-ray analysis, Nord. Pulp Paper Res. J. 3 (3), 132-138.2.      C. J. Werner, (2017): MCNP User's manual, Code Version 6.2, Los Alamos National Laboratory report, LA-UR-17-29981.3.      Ferritsius, O., and Moldenius, S. (1985): The effect of impregnation method on CTMP properties. In International Mechanical Pulping Conference Proceedings, SPCI, Stockholm (p. 91).4.      Frojdh, C., Norlin, B. and Frojdh, E. (2013): Spectral X-ray imaging with single photon processing detectors, Journal of Instrumentaion, Volume 8, Article number C02010.  5.      Gorski, D., Hill, J., Engstrand, P., and Johansson, L. (2010): Reduction of energy consumption in TMP refining through mechanical pre-treatment of wood chips, Nord. Pulp Paper Res. J, 25(2), 156-161.6.      Norlin, B., Reza, S., Fröjdh, C. and Nordin, T. (2018): Precision scan-imaging for paperboard quality inspection utilizing X-ray fluorescence, Journal of Instrumentation, Volume: 13, Article number C01021.7.      Reza, S., Norlin, B. and Thim, J. (2013): Non-destructive method to resolve the core and the coating on paperboard by spectroscopic x-ray imaging, Nord. Pulp Paper Res. J. 28 (3), 439-442. 
  •  
5.
  • Thungström, Göran, 1960-, et al. (författare)
  • Investigation of radiation hardness in lateral position sensitive detector, irradiated with 13.5 nm photons
  • 2018
  • Ingår i: Journal of Instrumentation. - : IOP PUBLISHING LTD. - 1748-0221. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Radiation hardness measurements have been done by irradiating lateral position sensitive (Si) detectors (LPSD) with 93 eV photons. Three different passivation layers have been investigated, SiO2, oxynitride and deposited 4 nm titanium-layer, on p in n-substrate LPSD and deposited 4 nm titanium layer on n in p-substrate LPSD. Best radiation hardness for 93 eV photon is obtained by using a 4 nm titanium layer. Only a slight decrease in response can be seen in the p in n-substrate LPSD. The best radiation hardness is achieved by using the n in p-substrate LPSD, which show no significant decrease in response. Scanning after irradiation with 93 eV gives only a variation in response of 0.26% in the surrounding area of exposure. No decrease in response can be detected during the scan. Test with a 108 eV photon beam gives an increased variation in response of 0.7%, caused by the shallower absorption in Si.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy