SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fransson Lars Åke) srt2:(2010-2014)"

Sökning: WFRF:(Fransson Lars Åke) > (2010-2014)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aili, Ulrika, et al. (författare)
  • Attenuation of tumor growth by formation of antiproliferative glycosaminoglycans correlates with low acetylation of histone H3.
  • 2010
  • Ingår i: Cancer Research. - 1538-7445. ; 70:9, s. 3771-3779
  • Tidskriftsartikel (refereegranskat)abstract
    • Glycosaminoglycan (GAG) chains anchored to core proteins form proteoglycans, widely distributed cell-surface macromolecules with multiple functions, such as regulation of growth factor and cytokine signaling, cell-cell interactions, and uptake of biomolecules. The biosynthesis of GAG can be manipulated by xylosides attached to various hydrophobic groups, and we have earlier reported that a naphthoxyloside, 2-(6-hydroxynaphthyl) beta-D-xylopyranoside (XylNapOH), which serves as a primer for GAG synthesis, reduces tumor load up to 97% in vivo, despite lower efficiency in vitro. Here we show, using radiolabeled xylosides and coculture experiments, that XylNapOH-treated bladder and breast carcinoma cells secrete antiproliferative GAG chains that are taken up by both normal and cancer cells and transported to the cell nuclei where they induce an antiproliferative effect, accompanied by apoptosis. We also show that XylNapOH treatment lowers the level of histone H3 acetylation selectively in bladder and breast carcinoma cells without affecting expression of histone H3. However, XylNapOH-primed GAG chains from normal cells are not internalized and do not cause growth retardation. Using in vitro and in vivo C6 glioma cell and tumor models, we show that XylNapOH is much more effective in vivo than in vitro. We propose that, in vivo, the antiproliferative XylNapOH-primed GAG chains produced by tumor cells inhibit tumor growth in an autocrine fashion by formation of antiproliferative GAG chains on the xyloside prodrug, whereas no antiproliferative GAG chains are produced by surrounding normal cells. This is a novel mechanism for targeting tumor cells, making these xylosides promising drug candidates for antitumor therapy.
  •  
2.
  • Cheng, Fang, et al. (författare)
  • APP/APLP2 expression is required to initiate endosome-nucleus-autophagosome trafficking of glypican-1-derived heparan sulfate.
  • 2014
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 289:30, s. 20871-20878
  • Tidskriftsartikel (refereegranskat)abstract
    • Anhydromannose (anMan)-containing heparan sulfate (HS) derived from the proteoglycan glypican-1 (Gpc-1) is generated in endosomes by an endogenously or ascorbate induced SNO-catalyzed reaction. Processing of the amyloid precursor protein (APP) and APP-like protein 2 (APLP2) by β- and γ-secretases into amyloid beta (Aβ) and Aβ-like peptides also takes place in these compartments. Moreover, anMan-containing HS suppresses the formation of toxic Aβ assemblies in vitro. We show by using deconvolution immunofluorescence microscopy with an anMan-specific monoclonal antibody as well as 35S-labeling experiment that expression of APP/APLP2 is required for ascorbate-induced transport of HS from endosomes to the nucleus. Nuclear translocation was observed in wild-type mouse embryonic fibroblasts (Wt-MEF), Tg2576 MEF and N2a neuroblastoma cells but not in APP-/- and APLP2-/- MEF. Transfection of APP-/- cells with a vector encoding APP restored nuclear import of anMan-containing HS. In Wt-MEF and N2a neuroblastoma cells exposed to β- or γ-secretase inhibitors, nuclear translocation was greatly impeded, suggesting involvement of APP/APLP2 degradation products. In Tg2576 MEF, the β-inhibitor blocked transport but the γ- inhibitor did not. During chase in ascorbate-free medium, anMan-containing HS disappeared from the nuclei of Wt-MEF. Confocal immunofluorescence microscopy showed that they appeared in acidic, LC3-positive vesicles in keeping with an autophagosomal location. There was increased accumulation of anMan-containing HS in nuclei and cytosolic vesicles upon treatment with chloroquine indicating that HS was degraded in lysosomes. Manipulations of APP expression and processing may have deleterious effects upon HS function in the nucleus.
  •  
3.
  • Cheng, Fang, et al. (författare)
  • Non-conserved, S-nitrosylated cysteines in glypican-1 react with N-unsubstituted glucosamines in heparan sulfate and catalyze deaminative cleavage.
  • 2012
  • Ingår i: Glycobiology. - : Oxford University Press (OUP). - 1460-2423 .- 0959-6658. ; 22:11, s. 1480-1485
  • Tidskriftsartikel (refereegranskat)abstract
    • The membrane lipid-anchored glypicans (heparan sulfate proteoglycans) are present in both vertebrates and invertebrates and serve as important modulators of growth factors and morphogens during development. Their core proteins are similar and consist of a large N-terminal domain comprising 14 evolutionary conserved cysteines and a C-terminal stalk carrying the heparan sulfate side-chains and the lipid anchor. Cysteines in glypican-1 can be S-nitrosylated but their positions have not been identified. The recently determined crystal structure of the N-terminal domain of glypican-1 has revealed that all the evolutionary conserved cysteines form intramolecular disulfide bonds. However, glypican-1 contains two more, non-conserved cysteines in the C-terminal stalk, located near the heparan sulfate attachment sites. We show here that the non-conserved cysteines are free thiols as a glypican-1 core protein containing the C-terminal stalk could be biotinylated by biotin-BMCC. After S-nitrosylation by using an NO-donor and copper ions, the glypican-1 core protein was retained on an affinity matrix substituted with heparan sulfate oligosaccharides containing N-unsubstituted glucosamines. The protein was displaced with 0.2 M glucosamine but also by 2 mM ascorbate. In the latter case, the heparan sulfate of the affinity matrix was simultaneously cleaved into fragments containing anhydromannose. We propose that the S-nitrosocysteine residues interact with closely located N-unsubstituted glucosamines in the heparan sulfate side-chains of the glypican-1 proteoglycan. Addition of ascorbate induces a series of reactions that eventually releases heparan sulfate fragments with reducing terminal anhydromannose, presumably without the formation of free nitric oxide.
  •  
4.
  • Cheng, Fang, et al. (författare)
  • Non-toxic amyloid beta formed in the presence of glypican-1 or its deaminatively generated heparan sulfate degradation products
  • 2013
  • Ingår i: Glycobiology. - : Oxford University Press (OUP). - 1460-2423 .- 0959-6658. ; 23:12, s. 1510-1519
  • Tidskriftsartikel (refereegranskat)abstract
    • The amyloid beta (A beta) peptides (mainly A beta 40 and A beta 42), which are derived from the amyloid precursor protein (APP), can oligomerize into antibody A11-positive, neurotoxic species, believed to be involved in Alzheimer's disease. Interestingly, APP binds strongly to the heparan sulfate (HS) proteoglycan (PG) glypican-1 (Gpc-1) in vitro and both proteins are colocalized inside cells. In endosomes, APP is proteolytically processed to yield A beta peptides. The HS chains of S-nitrosylated (SNO) Gpc-1 PG are cleaved into anhydromannose (anMan)-containing di- and oligosaccharides by an NO-dependent reaction in the same compartments. Here, we have studied the toxicity of oligomers/aggregates of A beta 40 and A beta 42, as well as A beta 40/42 mixtures that were formed in the presence of immobilized Gpc-1 PG or immobilized HS oligosaccharides. Afterwards, A beta was displaced from the matrices, analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and assayed for A11 immunoreactivity, for effects on growth of mouse N2a neuroblastoma cells and for membrane leakage in rat cortical neurons. HS generally promoted and accelerated A beta multimerization into oligomers as well as larger aggregates that were mostly A11 positive and showed toxic effects. However, non-toxic A beta was formed in the presence of Gpc-1 PG or when anMan-containing HS degradation products were simultaneously generated. Both toxic and non-toxic A beta peptides were taken up by the cells but toxic forms appeared to enter the nuclei to a larger extent. The protection afforded by the presence of HS degradation products may reflect a normal intracellular function for the A beta peptides.
  •  
5.
  • Cheng, Fang, et al. (författare)
  • Suppression of amyloid beta a11-immunoreactivity by vitamin C: possible role of heparan sulfate oligosaccharides derived from glypican-1 by ascorbate-induced, no-catalyzed degradation.
  • 2011
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 286:31, s. 27559-27572
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid beta is generated from the copper- and heparan sulfate (HS)-binding amyloid precursor protein (APP) by proteolytic processing. APP supports S-nitrosylation of the HS-proteoglycan glypican-1 (Gpc-1). In the presence of ascorbate there is NO-catalyzed release of anhydromannose (anMan)-containing oligosaccharides from Gpc-1-SNO. We have investigated whether these oligosaccharides interact with amyolid beta during APP processing and plaque formation. anMan-Immunoreactivity was detected in amyloid plaques of Alzheimer (AD) and APP transgenic (Tg2576) mouse brains by immunofluorescence microscopy. APP/APP degradation products detected by antibodies to the C-terminus of APP, but not amyolid beta oligomers detected by the anti-amyloid beta A11 antibody, colocalized with anMan-immunoreactivity in Tg2576 fibroblasts. A 50-55-kDa anionic, SDS-stable, anMan- and amyloid beta-immunoreactive species was obtained from Tg2576 fibroblasts using immunoprecipitation with anti-APP (C-terminal). anMan-Containing HS oligo- and disaccharide preparations modulated or suppressed A11-immunoreactivity and oligomerization of amyloid beta 42 peptide in an in vitro assay. A11 immunoreactivity increased in Tg2576 fibroblasts when Gpc-1 autoprocessing was inhibited by U18666A, and decreased when Gpc-1 autoprocessing was stimulated by ascorbate. Neither overexpression of Gpc-1 in Tg2576 fibroblasts nor addition of copper ion and NO-donor to hippocampal slices from 3xTg-AD mice affected A11 immunoreactivity levels. However, A11 immunoreactivity was greatly suppressed by the subsequent addition of ascorbate. We speculate that temporary interaction between the amyolid beta domain and small, anMan-containing oligosaccharides may preclude formation of toxic amyloid beta oligomers. A portion of the oligosaccharides co-secrete with the amyloid beta peptides and are deposited in plaques. These results support the notion that inadequate supply of vitamin C could contribute to late onset AD in humans.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy