SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Frecus Bogdan) srt2:(2011)"

Sökning: WFRF:(Frecus Bogdan) > (2011)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Oprea, Corneliu I., et al. (författare)
  • DFT study of electronic structure and optical properties of some Ru- and Rh-based complexes for dye-sensitized solar cells
  • 2011
  • Ingår i: Molecular Physics. - : Informa UK Limited. - 0026-8976 .- 1362-3028. ; 109:21, s. 2511-2523
  • Tidskriftsartikel (refereegranskat)abstract
    • The paper reports Time Dependent Density Functional Theory (TD DFT) calculations providing the structure, electronic properties and spectra of [Ru(II)(bpy)(3-n)(dcbpy)(n)](2+) and [Rh(III)(bpy)(3-n)(dcbpy)(n)](3+) complexes, where bpy = 2,2'-bipyridyl, dcbpy = 4,4'-dicarboxy-2,2'-bipyridyl, and n = 0, 1, 2, 3, studied as possible pigments for dye-sensitized solar cells. The role of the metallic ion and of the COOH groups on the optical properties of these complexes are compared and contrasted and their relevance as dyes for hybrid organic-inorganic photovoltaic cells is discussed. It was found that the optical spectra are strongly influenced by the metallic ion, with visible absorption bands for the Ru(II) complexes and only ultraviolet bands for the Rh(III) complexes. Upon excitation, the extra positive charge of the Rh(3+) centre tends to draw electrons towards the metal ion, facilitating some charge transfer from the ligand to the metal, whereas in the case of the Ru(2+) ion the electron transfer is clearly from the metal to the ligand. The carboxyl groups play an important role in strengthening the absorption bands in solution in the visible region. Of the complexes studied, the most suited as pigments for dye-sensitized solar cells are the [Ru(II)(bpy)(3-n)(dcbpy)(n)](2+) complexes with n = 1 and 2. This is based on the following arguments: (i) their intense absorption band in the visible region, (ii) the presence of the anchoring groups allowing the bonding to the TiO(2) substrate and the charge transfer, and (iii) the good energy level alignment with the conduction band edge of the semiconducting substrate and the redox level of the electrolyte.
  •  
2.
  • Oprea, Corneliu I., et al. (författare)
  • DFT study of structure-properties correlations in [MnTPP][TCNE] quasi-one-dimensional molecular magnets
  • 2011
  • Ingår i: Theoretical Chemistry accounts. - : Springer Science and Business Media LLC. - 1432-881X .- 1432-2234. ; 129:6, s. 847-857
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first band structure calculations of the quasi-one-dimensional [MnTPP][TCNE] compounds (TPP = meso-tetraphenylporphyrinato, TCNE = tetracyanoethylene), based on Density Functional Theory (DFT) methods, in order to interpret the magnetic ordering in these prototypic systems. We compare and contrast the results of broken-symmetry DFT calculations for extended systems, with periodic boundary conditions, and for finite systems, magnetic dimers modeling the actual molecular magnets. By varying systematically the main angles, we are able to determine the geometry dependence of the exchange interaction. Structure-properties correlations in these charge-transfer salts reveal the determinant role of the Mn-(N C) TCNE bond angle on the strength of the ferrimagnetic coupling between the S(1) = 2 spin located on the Mn(III)-porphyrin donor and the S(2) = 1/2 spin positioned on the cyanocarbon acceptor. When the Mn-(N C) TCNE angle is decreased, the intrachain magnetic coupling strengthens, correlated with the increase in the d(z)(2) - pi* orbital overlap. The exchange coupling constants resulting from DFT calculations of extended systems, with periodic boundary conditions, were found to be consistent with those obtained for the dimers, but systematically smaller. The exchange constants vary strongly with the functional used, hybrid functionals such as B3LYP leading to results that better correlate with the experimental mean-field critical temperatures. The coupling constant varies significantly with the type of broken-symmetry approach, depending on the overlap between magnetic orbitals, but weakly on the basis set once polarization effects are included. The electronic structure calculations for the extended systems provide a density of states consistent with the energy spectrum of the corresponding dimer, allowing for an intuitive explanation of the intrachain ferrimagnetic ordering.
  •  
3.
  • Rinkevicius, Zilvinas, et al. (författare)
  • Density Functional Restricted-Unrestricted/Molecular Mechanics Theory for Hyperfine Coupling Constants of Molecules in Solution
  • 2011
  • Ingår i: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9618 .- 1549-9626. ; 7:10, s. 3261-3271
  • Tidskriftsartikel (refereegranskat)abstract
    • A density functional restricted unrestricted approach, capable of evaluating hyperfine coupling constants with the inclusion of spin polarization effects in a spin-restricted Kohn-Sham method, has been extended to incorporate environmental effects. This is accomplished by means of a hybrid quantum mechanics/molecular mechanics formalism which allows for a granular representation of the polarization and electrostatic interactions with the classically described medium. By this technique, it is possible to trace the physical origin of hyperfine coupling constants in terms of spin polarization and spin density contributions and disentangle the dependence of these contributions on molecular geometry and solvent environment, something that increases the prospects for optimal design of spin labels for particular applications. A demonstration is given for the nitrogen isotropic hyperfine coupling constant in di-tert-butyl nitroxide solvated in water. The results indicate that the direct spin density contribution is about 5 times smaller than the spin polarization contribution to the nitrogen isotropic hyperfine coupling constant and that the latter contribution is solely responsible for the solvent shift of the constant. The developed approach is found capable of achieving satisfactory accuracy in prediction of the hyperfine coupling constants of solvated di-tert-butyl nitroxide and other similar nitroxides without the inclusion of solvent molecules in the quantum region provided polarizable force fields are used for the description of these molecules.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy