SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Frederiksen K. S.) srt2:(2020-2023)"

Sökning: WFRF:(Frederiksen K. S.) > (2020-2023)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Beck, S., et al. (författare)
  • The Open Innovation in Science research field: a collaborative conceptualisation approach
  • 2022
  • Ingår i: Industry and Innovation. - : Informa UK Limited. - 1366-2716 .- 1469-8390. ; 29:2, s. 136-185
  • Tidskriftsartikel (refereegranskat)abstract
    • Openness and collaboration in scientific research are attracting increasing attention from scholars and practitioners alike. However, a common understanding of these phenomena is hindered by disciplinary boundaries and disconnected research streams. We link dispersed knowledge on Open Innovation, Open Science, and related concepts such as Responsible Research and Innovation by proposing a unifying Open Innovation in Science (OIS) Research Framework. This framework captures the antecedents, contingencies, and consequences of open and collaborative practices along the entire process of generating and disseminating scientific insights and translating them into innovation. Moreover, it elucidates individual-, team-, organisation-, field-, and society-level factors shaping OIS practices. To conceptualise the framework, we employed a collaborative approach involving 47 scholars from multiple disciplines, highlighting both tensions and commonalities between existing approaches. The OIS Research Framework thus serves as a basis for future research, informs policy discussions, and provides guidance to scientists and practitioners.
  •  
5.
  • Chatzikonstantinou, T, et al. (författare)
  • COVID-19 severity and mortality in patients with CLL: an update of the international ERIC and Campus CLL study
  • 2021
  • Ingår i: Leukemia. - : Springer Science and Business Media LLC. - 1476-5551 .- 0887-6924. ; 3635:312, s. 3444-3454
  • Tidskriftsartikel (refereegranskat)abstract
    • Patients with chronic lymphocytic leukemia (CLL) may be more susceptible to Coronavirus disease 2019 (COVID-19) due to age, disease, and treatment-related immunosuppression. We aimed to assess risk factors of outcome and elucidate the impact of CLL-directed treatments on the course of COVID-19. We conducted a retrospective, international study, collectively including 941 patients with CLL and confirmed COVID-19. Data from the beginning of the pandemic until March 16, 2021, were collected from 91 centers. The risk factors of case fatality rate (CFR), disease severity, and overall survival (OS) were investigated. OS analysis was restricted to patients with severe COVID-19 (definition: hospitalization with need of oxygen or admission into an intensive care unit). CFR in patients with severe COVID-19 was 38.4%. OS was inferior for patients in all treatment categories compared to untreated (p < 0.001). Untreated patients had a lower risk of death (HR = 0.54, 95% CI:0.41–0.72). The risk of death was higher for older patients and those suffering from cardiac failure (HR = 1.03, 95% CI:1.02–1.04; HR = 1.79, 95% CI:1.04–3.07, respectively). Age, CLL-directed treatment, and cardiac failure were significant risk factors of OS. Untreated patients had a better chance of survival than those on treatment or recently treated.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Hjaeresen, S., et al. (författare)
  • MIF in the cerebrospinal fluid is decreased during relapsing-remitting while increased in secondary progressive multiple sclerosis
  • 2022
  • Ingår i: Journal of the Neurological Sciences. - : Elsevier BV. - 0022-510X. ; 439
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Macrophage migration inhibitory factor (MIF) is involved in the function of both the innate and adaptive immune systems and in neuroprotection and has recently been implicated in multiple sclerosis (MS). Objectives: Determination of MIF levels in the cerebrospinal fluid (CSF) of patients with distinct subtypes of MS and the cellular localization of MIF in human brain tissue. Methods: The levels of MIF were investigated in CSF from patients with clinically isolated syndrome (CIS) (n = 26), relapsing-remitting MS (RRMS) (n = 22), secondary progressive MS (SPMS) (n = 19), and healthy controls (HCs) (n = 24), using ELISA. The effect of disease-modifying therapies in the RRMS and SPMS cohorts were examined. Cellular distribution of MIF in the human brain was studied using immunochemistry and the newly available OligoInternode database. Results: MIF was significantly decreased in treatmentnaive CIS and RRMS patients compared to HCs but was elevated in SPMS. Interestingly, MIF levels were sex-dependent and significantly higher in women with CIS and RRMS. MIF expression in the human brain was localized to neurons, astrocytes, pericytes, and oligo5 oligodendrocytes but not in microglia. Conclusion: The finding that MIF was decreased in newly diagnosed CIS and RRMS patients but was high in patients with SPMS may suggest that MIF levels in CSF are regulated by local MIF receptor expression that affects the overall MIF signaling in the brain and may represent a protective mechanism that eventually fails.
  •  
10.
  • Hjaeresen, S., et al. (författare)
  • The levels of the serine protease HTRA1 in cerebrospinal fluid correlate with progression and disability in multiple sclerosis
  • 2021
  • Ingår i: Journal of Neurology. - : Springer Science and Business Media LLC. - 0340-5354 .- 1432-1459. ; 268, s. 3316-3324
  • Tidskriftsartikel (refereegranskat)abstract
    • Background High Temperature Requirement Serine Protease A1 (HTRA1) degrades extracellular matrix molecules (ECMs) and growth factors. It interacts with several proteins implicated in multiple sclerosis (MS), but has not previously been linked to the disease. Objective Investigate the levels of HTRA1 in cerebrospinal fluid (CSF) in different subtypes of MS and brain tissue. Methods Using ELISA, HTRA1 levels were compared in CSF from untreated patients with relapsing-remitting MS (RRMS, n = 23), secondary progressive MS (SPMS, n = 26) and healthy controls (HCs, n = 26). The effect of disease modifying therapies (DMTs) were examined in both patient groups. Cellular distribution in human brain was studied using immunochemistry and the oligointernode database, based on a single-nuclei RNA expression map. Results HTRA1 increased in RRMS and SPMS compared to HCs. DMT decreased HTRA1 levels in both types of MS. Using ROC analysis, HTRA1 cut-offs could discriminate HCs from RRMS patients with 100% specificity and 82.6% sensitivity. In the brain, HTRA1 was expressed in glia and neurons. Conclusion HTRA1 is a promising CSF biomarker for MS correlating with disease- and disability progression. Most cell species of the normal and diseased CNS express HTRA1 and the expression pattern could reflect pathological processes involved in MS pathogenesis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy