SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fredin Haslum Johan) "

Sökning: WFRF:(Fredin Haslum Johan)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fredin Haslum, Johan, et al. (författare)
  • Cell Painting-based bioactivity prediction boosts high-throughput screening hit-rates and compound diversity
  • 2024
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Identifying active compounds for a target is a time- and resource-intensive task in early drug discovery. Accurate bioactivity prediction using morphological profiles could streamline the process, enabling smaller, more focused compound screens. We investigate the potential of deep learning on unrefined single-concentration activity readouts and Cell Painting data, to predict compound activity across 140 diverse assays. We observe an average ROC-AUC of 0.744 ± 0.108 with 62% of assays achieving ≥0.7, 30% ≥0.8, and 7% ≥0.9. In many cases, the high prediction performance can be achieved using only brightfield images instead of multichannel fluorescence images. A comprehensive analysis shows that Cell Painting-based bioactivity prediction is robust across assay types, technologies, and target classes, with cell-based assays and kinase targets being particularly well-suited for prediction. Experimental validation confirms the enrichment of active compounds. Our findings indicate that models trained on Cell Painting data, combined with a small set of single-concentration data points, can reliably predict the activity of a compound library across diverse targets and assays while maintaining high hit rates and scaffold diversity. This approach has the potential to reduce the size of screening campaigns, saving time and resources, and enabling primary screening with more complex assays.
  •  
2.
  • Fredin Haslum, Johan, et al. (författare)
  • Bridging Generalization Gaps in High Content Imaging Through Online Self-Supervised Domain Adaptation
  • 2024
  • Ingår i: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 2024. ; , s. 7723-7732
  • Konferensbidrag (refereegranskat)abstract
    • High Content Imaging (HCI) plays a vital role in modern drug discovery and development pipelines, facilitating various stages from hit identification to candidate drug characterization. Applying machine learning models to these datasets can prove challenging as they typically consist of multiple batches, affected by experimental variation, especially if different imaging equipment have been used. Moreover, as new data arrive, it is preferable that they are analyzed in an online fashion. To overcome this, we propose CODA, an online self-supervised domain adaptation approach. CODA divides the classifier’s role into a generic feature extractor and a task-specific model. We adapt the feature extractor’s weights to the new domain using cross-batch self-supervision while keeping the task-specific model unchanged. Our results demonstrate that this strategy significantly reduces the generalization gap, achieving up to a 300% improvement when applied to data from different labs utilizing different microscopes. CODA can be applied to new, unlabeled out-of-domain data sources of different sizes, from a single plate to multiple experimental batches.
  •  
3.
  • Fredin Haslum, Johan (författare)
  • Machine Learning Methods for Image-based Phenotypic Profiling in Early Drug Discovery
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In the search for new therapeutic treatments, strategies to make the drug discovery process more efficient are crucial. Image-based phenotypic profiling, with its millions of pictures of fluorescent stained cells, is a rich and effective means to capture the morphological effects of potential treatments on living systems. Within this complex data await biological insights and new therapeutic opportunities – but computational tools are needed to unlock them.This thesis examines the role of machine learning in improving the utility and analysis of phenotypic screening data. It focuses on challenges specific to this domain, such as the lack of reliable labels that are essential for supervised learning, as well as confounding factors present in the data that are often unavoidable due to experimental variability. We explore transfer learning to boost model generalization and robustness, analyzing the impact of domain distance, initialization, dataset size, and architecture on the effectiveness of applying natural domain pre-trained weights to biomedical contexts. Building upon this, we delve into self-supervised pretraining for phenotypic image data, but find its direct application is inadequate in this context as it fails to differentiate between various biological effects. To overcome this, we develop new self-supervised learning strategies designed to enable the network to disregard confounding experimental noise, thus enhancing its ability to discern the impacts of various treatments. We further develop a technique that allows a model trained for phenotypic profiling to be adapted to new, unseen data without the need for any labels or supervised learning. Using this approach, a general phenotypic profiling model can be readily adapted to data from different sites without the need for any labels. Beyond our technical contributions, we also show that bioactive compounds identified using the approaches outlined in this thesis have been subsequently confirmed in biological assays through replication in an industrial setting. Our findings indicate that while phenotypic data and biomedical imaging present complex challenges, machine learning techniques can play a pivotal role in making early drug discovery more efficient and effective.
  •  
4.
  • Fredin Haslum, Johan, et al. (författare)
  • Metadata-guided Consistency Learning for High Content Images
  • 2023
  • Ingår i: PLMR: Volume 227: Medical Imaging with Deep Learning, 10-12 July 2023, Nashville, TN, USA.
  • Konferensbidrag (refereegranskat)abstract
    • High content imaging assays can capture rich phenotypic response data for large sets of compound treatments, aiding in the characterization and discovery of novel drugs. However, extracting representative features from high content images that can capture subtle nuances in phenotypes remains challenging. The lack of high-quality labels makes it difficult to achieve satisfactory results with supervised deep learning. Self-Supervised learning methods have shown great success on natural images, and offer an attractive alternative also to microscopy images. However, we find that self-supervised learning techniques underperform on high content imaging assays. One challenge is the undesirable domain shifts present in the data known as batch effects, which are caused by biological noise or uncontrolled experimental conditions. To this end, we introduce Cross-Domain Consistency Learning (CDCL), a self-supervised approach that is able to learn in the presence of batch effects. CDCL enforces the learning of biological similarities while disregarding undesirable batch-specific signals, leading to more useful and versatile representations. These features are organised according to their morphological changes and are more useful for downstream tasks – such as distinguishing treatments and mechanism of action.
  •  
5.
  • Matsoukas, Christos, et al. (författare)
  • What Makes Transfer Learning Work for Medical Images : Feature Reuse & Other Factors
  • 2022
  • Ingår i: 2022 IEEE/CVF conference on computer vision and pattern recognition (CVPR). - : Institute of Electrical and Electronics Engineers (IEEE). ; , s. 9215-9224
  • Konferensbidrag (refereegranskat)abstract
    • Transfer learning is a standard technique to transfer knowledge from one domain to another. For applications in medical imaging, transfer from ImageNet has become the de-facto approach, despite differences in the tasks and image characteristics between the domains. However, it is unclear what factors determine whether - and to what extent transfer learning to the medical domain is useful. The longstanding assumption that features from the source domain get reused has recently been called into question. Through a series of experiments on several medical image benchmark datasets, we explore the relationship between transfer learning, data size, the capacity and inductive bias of the model, as well as the distance between the source and target domain. Our findings suggest that transfer learning is beneficial in most cases, and we characterize the important role feature reuse plays in its success.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy