SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fredrikson S.) ;srt2:(2015-2019)"

Sökning: WFRF:(Fredrikson S.) > (2015-2019)

  • Resultat 1-10 av 31
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Granberg, T, et al. (författare)
  • Corpus callosum atrophy is strongly associated with cognitive impairment in multiple sclerosis: Results of a 17-year longitudinal study
  • 2015
  • Ingår i: Multiple sclerosis (Houndmills, Basingstoke, England). - : SAGE Publications. - 1477-0970 .- 1352-4585. ; 21:9, s. 1151-1158
  • Tidskriftsartikel (refereegranskat)abstract
    • Cognitive impairment is common in multiple sclerosis (MS) and may be subtle. The corpus callosum is essential for connectivity-demanding cognitive tasks and is significantly affected in MS, therefore it may serve as a marker for cognitive function. Objective: The objective of this paper is to longitudinally study the normalized corpus callosum area (nCCA) as a marker of cognitive function and disability in MS. Methods: Thirty-seven MS patients were followed from 1996 with follow-ups in 2004 and 2013. A healthy matched control group was recruited. The Expanded Disability Status Scale (EDSS) and Symbol Digit Modalities Test (SDMT) were assessed. The nCCA was measured on T2-weighted images. Volumetry was performed with FreeSurfer. Results: Disease duration spanned five decades (1.6–46 years). Annual corpus callosal atrophy rate decreased with disease duration. nCCA was strongly correlated with SDMT ( r = 0.793, p < 0.001) and moderately correlated with EDSS ( r = −0.545, p < 0.001) after adjusting for disease duration, age and sex. The correlations of brain parenchymal fraction, white matter fraction, gray matter fraction and normalized lesion volume were less strong. Conclusions: The nCCA correlates well with physical and cognitive disability in time perspectives close to two decades, outperforming volumetric measurements. The nCCA is fast and could be feasible for clinical implementation where it may help identify patients in need of neuropsychological evaluation.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Granberg, T, et al. (författare)
  • Clinical Feasibility of Synthetic MRI in Multiple Sclerosis : A Diagnostic and Volumetric Validation Study.
  • 2016
  • Ingår i: American Journal of Neuroradiology. - 0195-6108 .- 1936-959X. ; 37:6, s. 1023-9
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND PURPOSE: Quantitative MR imaging techniques are gaining interest as methods of reducing acquisition times while additionally providing robust measurements. This study aimed to implement a synthetic MR imaging method on a new scanner type and to compare its diagnostic accuracy and volumetry with conventional MR imaging in patients with MS and controls.MATERIALS AND METHODS: Twenty patients with MS and 20 healthy controls were enrolled after ethics approval and written informed consent. Synthetic MR imaging was implemented on a Siemens 3T scanner. Comparable conventional and synthetic proton-density-, T1-, and T2-weighted, and FLAIR images were acquired. Diagnostic accuracy, lesion detection, and artifacts were assessed by blinded neuroradiologic evaluation, and contrast-to-noise ratios, by manual tracing. Volumetry was performed with synthetic MR imaging, FreeSurfer, FMRIB Software Library, and Statistical Parametric Mapping. Repeatability was quantified by using the coefficient of variance.RESULTS: Synthetic proton-density-, T1-, and T2-weighted images were of sufficient or good quality and were acquired in 7% less time than with conventional MR imaging. Synthetic FLAIR images were degraded by artifacts. Lesion counts and volumes were higher in synthetic MR imaging due to differences in the contrast of dirty-appearing WM but did not affect the radiologic diagnostic classification or lesion topography (P = .50-.77). Synthetic MR imaging provided segmentations with the shortest processing time (16 seconds) and the lowest repeatability error for brain volume (0.14%), intracranial volume (0.12%), brain parenchymal fraction (0.14%), and GM fraction (0.56%).CONCLUSIONS: Synthetic MR imaging can be an alternative to conventional MR imaging for generating diagnostic proton-density-, T1-, and T2-weighted images in patients with MS and controls while additionally delivering fast and robust volumetric measurements suitable for MS studies.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 31

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy