SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Frei Allan) srt2:(2015-2019)"

Sökning: WFRF:(Frei Allan) > (2015-2019)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Anandhi, Aavudai, et al. (författare)
  • Evaluation of Climate Model Performance for Water Supply Studies : Case Study for New York City
  • 2019
  • Ingår i: Journal of water resources planning and management. - : ASCE-AMER SOC CIVIL ENGINEERS. - 0733-9496 .- 1943-5452. ; 145:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Evaluating the suitability of data from global climate models (GCMs) for use as input in water supply models is an important step in the larger task of evaluating the effects of climate change on water resources management such as that of water supply operations. The purpose of this paper is to present the process by which GCMs were evaluated and incorporated into the New York City (NYC) water supply's planning activities and to provide conclusions regarding the overall effectiveness of the ranking procedure used in the evaluation. A suite of GCMs participating in Phase 3 of the Coupled Model Intercomparison Project (CMIP3) were evaluated for use in climate change projections in the watersheds of the NYC water supply that provide 90% of the water consumed by NYC. GCM data were aggregated using the seven land-grid points surrounding NYC watersheds, and these data with a daily timestep were evaluated seasonally using probability-based skill scores for various combinations of five meteorological variables (precipitation, average, maximum and minimum temperatures, and wind speed). These are the key variables for the NYC water supply because they affect the timing and magnitude of water, energy, sediment, and nutrient fluxes into the reservoirs as well as in simulating watershed hydrology and reservoir hydrodynamics. We attempted to choose a subset of GCMs based on the average of several skill metrics that compared baseline (20C3M) GCM results to observations. Skill metrics for the study indicate that the skill in simulating the frequency distributions of measured data is highest for temperature and lowest for wind. However, our attempts to identify the best model or subgroup of models were not successful because we found that no single model performs best when considering all of the variables and seasons.
  •  
2.
  • Björkman, Anne, 1981, et al. (författare)
  • Plant functional trait change across a warming tundra biome
  • 2018
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 562:7725, s. 57-62
  • Tidskriftsartikel (refereegranskat)abstract
    • The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature–trait relationships were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant communities. Community height increased with warming across all sites over the past three decades, but other traits lagged far behind predicted rates of change. Our findings highlight the challenge of using space-for-time substitution to predict the functional consequences of future warming and suggest that functions that are tied closely to plant height will experience the most rapid change. They also reveal the strength with which environmental factors shape biotic communities at the coldest extremes of the planet and will help to improve projections of functional changes in tundra ecosystems with climate warming.
  •  
3.
  • Björkman, Anne, 1981, et al. (författare)
  • Tundra Trait Team: A database of plant traits spanning the tundra biome
  • 2018
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 27:12, s. 1402-1411
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2018 The Authors Global Ecology and Biogeography Published by John Wiley & Sons Ltd Motivation: The Tundra Trait Team (TTT) database includes field-based measurements of key traits related to plant form and function at multiple sites across the tundra biome. This dataset can be used to address theoretical questions about plant strategy and trade-offs, trait–environment relationships and environmental filtering, and trait variation across spatial scales, to validate satellite data, and to inform Earth system model parameters. Main types of variable contained: The database contains 91,970 measurements of 18 plant traits. The most frequently measured traits (>1,000 observations each) include plant height, leaf area, specific leaf area, leaf fresh and dry mass, leaf dry matter content, leaf nitrogen, carbon and phosphorus content, leaf C:N and N:P, seed mass, and stem specific density. Spatial location and grain: Measurements were collected in tundra habitats in both the Northern and Southern Hemispheres, including Arctic sites in Alaska, Canada, Greenland, Fennoscandia and Siberia, alpine sites in the European Alps, Colorado Rockies, Caucasus, Ural Mountains, Pyrenees, Australian Alps, and Central Otago Mountains (New Zealand), and sub-Antarctic Marion Island. More than 99% of observations are georeferenced. Time period and grain: All data were collected between 1964 and 2018. A small number of sites have repeated trait measurements at two or more time periods. Major taxa and level of measurement: Trait measurements were made on 978 terrestrial vascular plant species growing in tundra habitats. Most observations are on individuals (86%), while the remainder represent plot or site means or maximums per species. Software format: csv file and GitHub repository with data cleaning scripts in R; contribution to TRY plant trait database (www.try-db.org) to be included in the next version release.
  •  
4.
  • 2017
  • Ingår i: Physical Review D. - 2470-0010 .- 2470-0029. ; 96:2
  • Tidskriftsartikel (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy