SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Freitag C) srt2:(2015-2019)"

Sökning: WFRF:(Freitag C) > (2015-2019)

  • Resultat 1-10 av 21
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Weiner, D. J., et al. (författare)
  • Polygenic transmission disequilibrium confirms that common and rare variation act additively to create risk for autism spectrum disorders
  • 2017
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 49:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Autism spectrum disorder (ASD) risk is influenced by common polygenic and de novo variation. We aimed to clarify the influence of polygenic risk for ASD and to identify subgroups of ASD cases, including those with strongly acting de novo variants, in which polygenic risk is relevant. Using a novel approach called the polygenic transmission disequilibrium test and data from 6,454 families with a child with ASD, we show that polygenic risk for ASD, schizophrenia, and greater educational attainment is over-transmitted to children with ASD. These findings hold independent of proband IQ. We find that polygenic variation contributes additively to risk in ASD cases who carry a strongly acting de novo variant. Lastly, we show that elements of polygenic risk are independent and differ in their relationship with phenotype. These results confirm that the genetic influences on ASD are additive and suggest that they create risk through at least partially distinct etiologic pathways.
  •  
2.
  • Anney, R. J. L., et al. (författare)
  • Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia
  • 2017
  • Ingår i: Molecular Autism. - : Springer Science and Business Media LLC. - 2040-2392. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Over the past decade genome-wide association studies (GWAS) have been applied to aid in the understanding of the biology of traits. The success of this approach is governed by the underlying effect sizes carried by the true risk variants and the corresponding statistical power to observe such effects given the study design and sample size under investigation. Previous ASD GWAS have identified genome-wide significant (GWS) risk loci; however, these studies were of only of low statistical power to identify GWS loci at the lower effect sizes (odds ratio (OR) < 1.15). Methods: We conducted a large-scale coordinated international collaboration to combine independent genotyping data to improve the statistical power and aid in robust discovery of GWS loci. This study uses genome-wide genotyping data from a discovery sample (7387 ASD cases and 8567 controls) followed by meta-analysis of summary statistics from two replication sets (7783 ASD cases and 11359 controls; and 1369 ASD cases and 137308 controls). Results: We observe a GWS locus at 10q24.32 that overlaps several genes including PITX3, which encodes a transcription factor identified as playing a role in neuronal differentiation and CUEDC2 previously reported to be associated with social skills in an independent population cohort. We also observe overlap with regions previously implicated in schizophrenia which was further supported by a strong genetic correlation between these disorders (Rg = 0.23; P= 9 x10(-6)). We further combined these Psychiatric Genomics Consortium (PGC) ASD GWAS data with the recent PGC schizophrenia GWAS to identify additional regions which may be important in a common neurodevelopmental phenotype and identified 12 novel GWS loci. These include loci previously implicated in ASD such as FOXP1 at 3p13, ATP2B2 at 3p25.3, and a 'neurodevelopmental hub' on chromosome 8p11.23. Conclusions: This study is an important step in the ongoing endeavour to identify the loci which underpin the common variant signal in ASD. In addition to novel GWS loci, we have identified a significant genetic correlation with schizophrenia and association of ASD with several neurodevelopmental- related genes such as EXT1, ASTN2, MACROD2, and HDAC4.
  •  
3.
  •  
4.
  • Teumer, A, et al. (författare)
  • Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria
  • 2019
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 4130-
  • Tidskriftsartikel (refereegranskat)abstract
    • Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria.
  •  
5.
  • Di Angelantonio, E., et al. (författare)
  • Association of Cardiometabolic Multimorbidity With Mortality
  • 2015
  • Ingår i: JAMA. - : American Medical Association (AMA). - 0098-7484 .- 1538-3598. ; 314:1, s. 52-60
  • Tidskriftsartikel (refereegranskat)abstract
    • IMPORTANCE: The prevalence of cardiometabolic multimorbidity is increasing. OBJECTIVE: To estimate reductions in life expectancy associated with cardiometabolic multimorbidity. DESIGN, SETTING, AND PARTICIPANTS: Age- and sex-adjusted mortality rates and hazard ratios (HRs) were calculated using individual participant data from the Emerging Risk Factors Collaboration (689,300 participants; 91 cohorts; years of baseline surveys: 1960-2007; latest mortality follow-up: April 2013; 128,843 deaths). The HRs from the Emerging Risk Factors Collaboration were compared with those from the UK Biobank (499,808 participants; years of baseline surveys: 2006-2010; latest mortality follow-up: November 2013; 7995 deaths). Cumulative survival was estimated by applying calculated age-specific HRs for mortality to contemporary US age-specific death rates. EXPOSURES: A history of 2 or more of the following: diabetes mellitus, stroke, myocardial infarction (MI). MAIN OUTCOMES AND MEASURES: All-cause mortality and estimated reductions in life expectancy. RESULTS: In participants in the Emerging Risk Factors Collaboration without a history of diabetes, stroke, or MI at baseline (reference group), the all-cause mortality rate adjusted to the age of 60 years was 6.8 per 1000 person-years. Mortality rates per 1000 person-years were 15.6 in participants with a history of diabetes, 16.1 in those with stroke, 16.8 in those with MI, 32.0 in those with both diabetes and MI, 32.5 in those with both diabetes and stroke, 32.8 in those with both stroke and MI, and 59.5 in those with diabetes, stroke, and MI. Compared with the reference group, the HRs for all-cause mortality were 1.9 (95% CI, 1.8-2.0) in participants with a history of diabetes, 2.1 (95% CI, 2.0-2.2) in those with stroke, 2.0 (95% CI, 1.9-2.2) in those with MI, 3.7 (95% CI, 3.3-4.1) in those with both diabetes and MI, 3.8 (95% CI, 3.5-4.2) in those with both diabetes and stroke, 3.5 (95% CI, 3.1-4.0) in those with both stroke and MI, and 6.9 (95% CI, 5.7-8.3) in those with diabetes, stroke, and MI. The HRs from the Emerging Risk Factors Collaboration were similar to those from the more recently recruited UK Biobank. The HRs were little changed after further adjustment for markers of established intermediate pathways (eg, levels of lipids and blood pressure) and lifestyle factors (eg, smoking, diet). At the age of 60 years, a history of any 2 of these conditions was associated with 12 years of reduced life expectancy and a history of all 3 of these conditions was associated with 15 years of reduced life expectancy. CONCLUSIONS AND RELEVANCE: Mortality associated with a history of diabetes, stroke, or MI was similar for each condition. Because any combination of these conditions was associated with multiplicative mortality risk, life expectancy was substantially lower in people with multimorbidity.
  •  
6.
  • Wessel, Jennifer, et al. (författare)
  • Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility
  • 2015
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Fasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the role of coding variation on these traits by analysis of variants on the HumanExome BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492; MAF = 1.4%) with lower FG (beta = -0.09 +/- 0.01 mmol l(-1), P = 3.4 x 10(-12)), T2D risk (OR[95% CI] = 0.86[0.76-0.96], P = 0.010), early insulin secretion (beta = -0.07 +/- 0.035 pmol(insulin) mmol(glucose)(-1), P = 0.048), but higher 2-h glucose (beta = 0.16 +/- 0.05 mmol l(-1), P = 4.3 x 10(-4)). We identify a gene-based association with FG at G6PC2 (p(SKAT) = 6.8 x 10(-6)) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007 (MAF = 20%) in the first intron of ABO at the putative promoter of an antisense lncRNA, associating with higher FG (beta = 0.02 +/- 0.004 mmol l(-1), P = 1.3 x 10(-8)). Our approach identifies novel coding variant associations and extends the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D susceptibility.
  •  
7.
  • Freitag, Daniel F., et al. (författare)
  • Cardiometabolic effects of genetic upregulation of the interleukin 1 receptor antagonist: a Mendelian randomisation analysis
  • 2015
  • Ingår i: The Lancet Diabetes & Endocrinology. - 2213-8595. ; 3:4, s. 243-253
  • Tidskriftsartikel (refereegranskat)abstract
    • Background To investigate potential cardiovascular and other effects of long-term pharmacological interleukin 1 (IL-1) inhibition, we studied genetic variants that produce inhibition of IL-1, a master regulator of inflammation. Methods We created a genetic score combining the effects of alleles of two common variants (rs6743376 and rs1542176) that are located upstream of IL1RN, the gene encoding the IL-1 receptor antagonist (IL-1Ra; an endogenous inhibitor of both IL-1 alpha and IL-1 beta); both alleles increase soluble IL-1Ra protein concentration. We compared effects on inflammation biomarkers of this genetic score with those of anakinra, the recombinant form of IL-1Ra, which has previously been studied in randomised trials of rheumatoid arthritis and other inflammatory disorders. In primary analyses, we investigated the score in relation to rheumatoid arthritis and four cardiometabolic diseases (type 2 diabetes, coronary heart disease, ischaemic stroke, and abdominal aortic aneurysm; 453 411 total participants). In exploratory analyses, we studied the relation of the score to many disease traits and to 24 other disorders of proposed relevance to IL-1 signalling (746 171 total participants). Findings For each IL1RN minor allele inherited, serum concentrations of IL-1Ra increased by 0.22 SD (95% CI 0.18-0.25; 12.5%; p=9.3 x 10(-33)), concentrations of interleukin 6 decreased by 0.02 SD (-0.04 to -0.01; -1,7%; p=3.5 x 10(-3)), and concentrations of C-reactive protein decreased by 0.03 SD (-0.04 to -0.02; -3.4%; p=7.7 x 10(-14)). We noted the effects of the genetic score on these inflammation biomarkers to be directionally concordant with those of anakinra. The allele count of the genetic score had roughly log-linear, dose-dependent associations with both IL-1Ra concentration and risk of coronary heart disease. For people who carried four IL-1Ra-raising alleles, the odds ratio for coronary heart disease was 1.15 (1.08-1.22; p=1.8 x 10(-6)) compared with people who carried no IL-1Ra-raising alleles; the per-allele odds ratio for coronary heart disease was 1.03 (1.02-1.04; p=3.9 x 10(-10)). Perallele odds ratios were 0.97 (0.95-0.99; p=9.9 x 10(-4)) for rheumatoid arthritis, 0.99 (0.97-1.01; p=0.47) for type 2 diabetes, 1.00 (0.98-1.02; p=0.92) for ischaemic stroke, and 1.08 (1.04-1.12; p=1.8 x 10(-5)) for abdominal aortic aneurysm. In exploratory analyses, we observed per-allele increases in concentrations of proatherogenic lipids, including LDL-cholesterol, but no clear evidence of association for blood pressure, glycaemic traits, or any of the 24 other disorders studied. Modelling suggested that the observed increase in LDL-cholesterol could account for about a third of the association observed between the genetic score and increased coronary risk. Interpretation Human genetic data suggest that long-term dual IL-1 alpha/beta inhibition could increase cardiovascular risk and, conversely, reduce the risk of development of rheumatoid arthritis. The cardiovascular risk might, in part, be mediated through an increase in proatherogenic lipid concentrations. Copyright (C) The Interleukin 1 Genetics Consortium. Open Access article distributed under the terms of CC-BY-NC-ND.
  •  
8.
  •  
9.
  • Pfeiffer, D., et al. (författare)
  • Genetic Imbalance Is Associated With Functional Outcome After Ischemic Stroke
  • 2019
  • Ingår i: Stroke. - : Ovid Technologies (Wolters Kluwer Health). - 0039-2499 .- 1524-4628. ; 50:2, s. 298-304
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Purpose-We sought to explore the effect of genetic imbalance on functional outcome after ischemic stroke (IS). Methods-Copy number variation was identified in high-density single-nucleotide polymorphism microarray data of IS patients from the CADISP (Cervical Artery Dissection and Ischemic Stroke Patients) and SiGN (Stroke Genetics Network)/ GISCOME (Genetics of Ischaemic Stroke Functional Outcome) networks. Genetic imbalance, defined as total number of protein-coding genes affected by copy number variations in an individual, was compared between patients with favorable (modified Rankin Scale score of 0-2) and unfavorable (modified Rankin Scale score of = 3) outcome after 3 months. Subgroup analyses were confined to patients with imbalance affecting ohnologs-a class of dose-sensitive genes, or to those with imbalance not affecting ohnologs. The association of imbalance with outcome was analyzed by logistic regression analysis, adjusted for age, sex, stroke subtype, stroke severity, and ancestry. Results-The study sample comprised 816 CADISP patients (age 44.2 +/- 10.3 years) and 2498 SiGN/GISCOME patients (age 67.7 +/- 14.2 years). Outcome was unfavorable in 122 CADISP and 889 SiGN/GISCOME patients. Multivariate logistic regression analysis revealed that increased genetic imbalance was associated with less favorable outcome in both samples (CADISP: P=0.0007; odds ratio=0.89; 95% CI, 0.82-0.95 and SiGN/GISCOME: P=0.0036; odds ratio=0.94; 95% CI, 0.91-0.98). The association was independent of age, sex, stroke severity on admission, stroke subtype, and ancestry. On subgroup analysis, imbalance affecting ohnologs was associated with outcome (CADISP: odds ratio=0.88; 95% CI, 0.80-0.95 and SiGN/GISCOME: odds ratio=0.93; 95% CI, 0.89-0.98) whereas imbalance without ohnologs lacked such an association. Conclusions-Increased genetic imbalance was associated with poorer functional outcome after IS in both study populations. Subgroup analysis revealed that this association was driven by presence of ohnologs in the respective copy number variations, suggesting a causal role of the deleterious effects of genetic imbalance.
  •  
10.
  • Aresh, Bejan, 1984-, et al. (författare)
  • Spinal Cord Interneurons Expressing the Gastrin-Releasing Peptide Receptor Convey Itch Through VGLUT2-Mediated Signaling
  • 2017
  • Ingår i: Pain. - : Ovid Technologies (Wolters Kluwer Health). - 0304-3959 .- 1872-6623. ; 158:5, s. 945-961
  • Tidskriftsartikel (refereegranskat)abstract
    • Itch is a sensation that promotes the desire to scratch, which can be evoked by mechanical and chemical stimuli. In the spinal cord, neurons expressing the gastrin-releasing peptide receptor (GRPR) have been identified as specific mediators of itch. However, our understanding of the GRPR population in the spinal cord, and thus how these neurons exercise their functions, is limited. For this purpose, we constructed a Cre line designed to target the GRPR population of neurons (Grpr-Cre). Our analysis revealed that Grpr-Cre cells in the spinal cord are predominantly excitatory interneurons that are found in the dorsal lamina, especially in laminae II-IV. Application of the specific agonist gastrin-releasing peptide induced spike responses in 43.3% of the patched Grpr-Cre neurons, where the majority of the cells displayed a tonic firing property. Additionally, our analysis showed that the Grpr-Cre population expresses Vglut2 mRNA, and mice ablated of Vglut2 in Grpr-Cre cells (Vglut2-lox; Grpr-Cre mice) displayed less spontaneous itch and attenuated responses to both histaminergic and nonhistaminergic agents. We could also show that application of the itch-inducing peptide, natriuretic polypeptide B, induces calcium influx in a subpopulation of Grpr-Cre neurons. To summarize, our data indicate that the Grpr-Cre spinal cord neural population is composed of interneurons that use VGLUT2-mediated signaling for transmitting chemical and spontaneous itch stimuli to the next, currently unknown, neurons in the labeled line of itch.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy