SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fuller K) srt2:(2010-2014)"

Sökning: WFRF:(Fuller K) > (2010-2014)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Salomé, Pedro M. P., et al. (författare)
  • Cu(In,Ga)Se-2 Solar Cells With Varying Na Content Prepared on Nominally Alkali-Free Glass Substrates
  • 2013
  • Ingår i: IEEE Journal of Photovoltaics. - 2156-3381. ; 3:2, s. 852-858
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, Cu(In,Ga)Se-2 (CIGS) thin-film solar cells are prepared on nominally alkali-free glass substrates using an in-line CIGS growth process. As compared with, for example, borosilicate glass or quartz, the glass is engineered to have similar thermal expansion coefficient as soda-lime glass (SLG) but with alkali content close to zero. Na is incorporated in the CIGS material using an ex-situ deposited NaF precursor layer evaporated onto the Mo back contact. Several thicknesses of the NaF layer were tested. The results show that there is a process window, between 15 and 22.5 nm NaF, where the solar cell conversion efficiency is comparable with or exceeding that of SLG references. The effect of an NaF layer that is too thin on the solar cell parameters was mainly lowering the open-circuit voltage, which points to a lower effective dopant concentration in the CIGS layer and is also consistent with presented C-V measurements and modeling results. For excessively thick NaF layers, delamination of the CIGS layer occurred. Additional measurements, such as scanning electron microscopy (SEM), secondary ion mass spectrometry, capacitance-voltage analysis (C-V), time-resolved photoluminescence (TRPL), external quantum efficiency (EQE), current-voltage analysis (J-V), and modeling, are presented, and the results are discussed.
  •  
4.
  • Fjällström, Viktor, et al. (författare)
  • Potential-Induced Degradation of CuIn1-xGaxSe2 Thin Film Solar Cells
  • 2013
  • Ingår i: IEEE Journal of Photovoltaics. - 2156-3381. ; 3:3, s. 1090-1094
  • Tidskriftsartikel (refereegranskat)abstract
    • The use of Na-free or low Na content glass substrates is observed to enhance the resiliency to potential-induced degradation, as compared with glass substrates with high Na content, such as soda lime glass (SLG). The results from stress tests in this study suggest that degradation caused by a combination of heat and bias across the SLG substrate is linked to increased Na concentration in the CdS and Cu(In,Ga)Se-2 (CIGS) layers in CIGS-based solar cells. The degradation during the bias stress is dramatic. The efficiency drops to close to 0% after 50 h of stressing. On the other hand, cells on Na-free and low Na content substrates exhibited virtually no efficiency degradation. The degraded cells showed partial recovery by resting at room temperature without bias; thus, the degradation is nonpermanent and may be due to Na migration and accumulation rather than chemical reaction.
  •  
5.
  • Hegglin, M. I., et al. (författare)
  • SPARC Data Initiative: Comparison of water vapor climatologies from international satellite limb sounders
  • 2013
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202 .- 2169-897X. ; 118:20, s. 0148-0227
  • Tidskriftsartikel (refereegranskat)abstract
    • Within the SPARC Data Initiative, the first comprehensive assessment of the quality of 13 water vapor products from 11 limb-viewing satellite instruments (LIMS, SAGE II, UARS-MLS, HALOE, POAM III, SMR, SAGE III, MIPAS, SCIAMACHY, ACE-FTS, and Aura-MLS) obtained within the time period 1978–2010 has been performed. Each instrument's water vapor profile measurements were compiled into monthly zonal mean time series on a common latitude-pressure grid. These time series serve as basis for the “climatological” validation approach used within the project. The evaluations include comparisons of monthly or annual zonal mean cross sections and seasonal cycles in the tropical and extratropical upper troposphere and lower stratosphere averaged over one or more years, comparisons of interannual variability, and a study of the time evolution of physical features in water vapor such as the tropical tape recorder and polar vortex dehydration. Our knowledge of the atmospheric mean state in water vapor is best in the lower and middle stratosphere of the tropics and midlatitudes, with a relative uncertainty of ±2–6% (as quantified by the standard deviation of the instruments' multiannual means). The uncertainty increases toward the polar regions (±10–15%), the mesosphere (±15%), and the upper troposphere/lower stratosphere below 100 hPa (±30–50%), where sampling issues add uncertainty due to large gradients and high natural variability in water vapor. The minimum found in multiannual (1998–2008) mean water vapor in the tropical lower stratosphere is 3.5 ppmv (±14%), with slightly larger uncertainties for monthly mean values. The frequently used HALOE water vapor data set shows consistently lower values than most other data sets throughout the atmosphere, with increasing deviations from the multi-instrument mean below 100 hPa in both the tropics and extratropics. The knowledge gained from these comparisons and regarding the quality of the individual data sets in different regions of the atmosphere will help to improve model-measurement comparisons (e.g., for diagnostics such as the tropical tape recorder or seasonal cycles), data merging activities, and studies of climate variability.
  •  
6.
  • Hultqvist, Adam, et al. (författare)
  • Performance of Cu(In,Ga)Se-2 solar cells using nominally alkali free glass substrates with varying coefficient of thermal expansion
  • 2013
  • Ingår i: Journal of Applied Physics. - : AIP Publishing. - 0021-8979 .- 1089-7550. ; 114:9, s. 094501-
  • Tidskriftsartikel (refereegranskat)abstract
    • In this report, Cu(In,Ga)Se-2, CIGS, solar cell devices have been fabricated on nominally alkali free glasses with varying coefficients of thermal expansion (CTE) from 50 to 95* 10(-7)/degrees C. A layer of NaF deposited on top of the Mo was used to provide Na to the CIGS film. Increasing the glass CTE leads to a change of stress state of the solar cell stack as evidenced by measured changes of stress state of the Mo layer after CIGS deposition. The open circuit voltage, the short circuit current density, and the fill factors, for solar cells made on the various substrates, are all found to increase with CTE to a certain point. The median energy conversion efficiency values for 32 solar cells increases from 14.6% to the lowest CTE glass to 16.5% and 16.6%, respectively, for the two highest CTE glasses, which have CTE values closest to that of the soda lime glass. This is only slightly lower than the 17.0% median of soda lime glass reference devices. We propose a model where an increased defect density in the CIGS layer caused by thermal mismatch during cool-down is responsible for the lower efficiency for the low CTE glass substrates.
  •  
7.
  • Salome, Pedro M. P., et al. (författare)
  • Incorporation of Na in Cu(In,Ga)Se-2 Thin-Film Solar Cells : A Statistical Comparison Between Na From Soda-Lime Glass and From a Precursor Layer of NaF
  • 2014
  • Ingår i: IEEE Journal of Photovoltaics. - 2156-3381 .- 2156-3403. ; 4:6, s. 1659-1664
  • Tidskriftsartikel (refereegranskat)abstract
    • The presence of Na in Cu(In,Ga)Se-2 layers increases the electrical performance of this type of thin- film solar cell. A detailed comparison of incorporating Na in the CIGS layer by two different methods is performed by evaluating several hundred devices fabricated under similar conditions. The firstmethod is based on the conventionally used Na diffusion from the soda-lime glass substrate, whereas the second method is based on a NaF precursor layer deposited on a Mo- coated alkali- free glass substrate. The sample where Na is introduced by using a NaF precursor layer shows an orientation weighted toward (2 0 4)/(2 2 0) and a net acceptor concentration of 3.4 x 10(16) cm(-3), while SLG shows a (1 1 2) orientation with a 2.9 x 10(16) cm(-3) acceptor concentration. Both sample types show close identical elemental depth profiles, morphology, and electrical performance.
  •  
8.
  • Salome, Pedro M. P., et al. (författare)
  • The effect of high growth temperature on Cu(In,Ga)Se-2 thin film solar cells
  • 2014
  • Ingår i: Solar Energy Materials and Solar Cells. - : Elsevier BV. - 0927-0248 .- 1879-3398. ; 123, s. 166-170
  • Tidskriftsartikel (refereegranskat)abstract
    • The morphological, elemental distribution and electrical performance effects of increasing the Cu(In,Ga) Se-2 (CIGS) growth substrate temperature are studied. While the increased substrate growth temperature with no other modifications led to increased CIGS grain size, it also resulted in depth profile flattening of the [Ga]/([Ga]+[In]) ratio. Tuning the Ga profile in the high temperature process led to a more desirable [Ga]/([Ga]+[In]) depth profile and allowed a comparison between high and standard temperature. Devices prepared at higher temperature showed an improved grain size and the electrical performance is very similar to that of the reference sample prepared at a standard temperature.
  •  
9.
  • Tegtmeier, S., et al. (författare)
  • SPARC Data Initiative: A comparison of ozone climatologies from international satellite limb sounders
  • 2013
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 118:21, s. 12229-12247
  • Tidskriftsartikel (refereegranskat)abstract
    • A comprehensive quality assessment of the ozone products from 18 limb-viewing satellite instruments is provided by means of a detailed intercomparison. The ozone climatologies in form of monthly zonal mean time series covering the upper troposphere to lower mesosphere are obtained from LIMS, SAGE I/II/III, UARS-MLS, HALOE, POAM II/III, SMR, OSIRIS, MIPAS, GOMOS, SCIAMACHY, ACE-FTS, ACE-MAESTRO, Aura-MLS, HIRDLS, and SMILES within 1978–2010. The intercomparisons focus on mean biases of annual zonal mean fields, interannual variability, and seasonal cycles. Additionally, the physical consistency of the data is tested through diagnostics of the quasi-biennial oscillation and Antarctic ozone hole. The comprehensive evaluations reveal that the uncertainty in our knowledge of the atmospheric ozone mean state is smallest in the tropical and midlatitude middle stratosphere with a 1σ multi-instrument spread of less than ±5%. While the overall agreement among the climatological data sets is very good for large parts of the stratosphere, individual discrepancies have been identified, including unrealistic month-to-month fluctuations, large biases in particular atmospheric regions, or inconsistencies in the seasonal cycle. Notable differences between the data sets exist in the tropical lower stratosphere (with a spread of ±30%) and at high latitudes (±15%). In particular, large relative differences are identified in the Antarctic during the time of the ozone hole, with a spread between the monthly zonal mean fields of ±50%. The evaluations provide guidance on what data sets are the most reliable for applications such as studies of ozone variability, model-measurement comparisons, detection of long-term trends, and data-merging activities.
  •  
10.
  • Toohey, M., et al. (författare)
  • Characterizing sampling biases in the trace gas climatologies of the SPARC Data Initiative
  • 2013
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202 .- 2169-897X .- 2169-8996. ; 118:20, s. 11847-11862
  • Tidskriftsartikel (refereegranskat)abstract
    • Monthly zonal mean climatologies of atmospheric measurements from satellite instruments can have biases due to the nonuniform sampling of the atmosphere by the instruments. We characterize potential sampling biases in stratospheric trace gas climatologies of the Stratospheric Processes and Their Role in Climate (SPARC) Data Initiative using chemical fields from a chemistry climate model simulation and sampling patterns from 16 satellite-borne instruments. The exercise is performed for the long-lived stratospheric trace gases O3 and H2O. Monthly sampling biases for O3 exceed 10% for many instruments in the high-latitude stratosphere and in the upper troposphere/lower stratosphere, while annual mean sampling biases reach values of up to 20% in the same regions for some instruments. Sampling biases for H2O are generally smaller than for O3, although still notable in the upper troposphere/lower stratosphere and Southern Hemisphere high latitudes. The most important mechanism leading to monthly sampling bias is nonuniform temporal sampling, i.e., the fact that for many instruments, monthly means are produced from measurements which span less than the full month in question. Similarly, annual mean sampling biases are well explained by nonuniformity in the month-to-month sampling by different instruments. Nonuniform sampling in latitude and longitude are shown to also lead to nonnegligible sampling biases, which are most relevant for climatologies which are otherwise free of biases due to nonuniform temporal sampling.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy