SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Furebring Christina) srt2:(2015-2019)"

Sökning: WFRF:(Furebring Christina) > (2015-2019)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bass, Tarek (författare)
  • Affibody molecules targeting HER3 for cancer therapy
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The development of targeted therapy has contributed tremendously to the treatment of patients with cancer. The use of highly specific affinity proteins to target cancer cells has become a standard in treatment strategies for several different cancers. In light of this, many cancer cell markers are investigated for their potential use in diagnostics and therapy. One such marker is the human epidermal growth factor receptor 3, HER3. It has been established as an important contributor to many cancer types. The function of HER3 is to relay cell growth signals from outside of the cell to the inside. Interfering with- and inhibit- ing the function of HER3 has emerged as an interesting strategy for cancer therapeutics. The studies presented in this thesis aim to target HER3 with small, engineered affinity domain proteins for therapeutic purposes. Monomeric affibody molecules have previously been engineered to bind and inhibit HER3 in vitro. Due to the relatively low expression of HER3, an increase in valency appears promising to strengthen the therapeutic potential. Affibody molecules targeting the receptor were thus linked to form bivalent and bispecific constructs and evaluated both in vitro and in vivo. In the first study of this thesis affibody molecules specific for HER3 and HER2 were fused to an albumin binding domain to form bivalent and bispecific construct. The constructs inhibited ligand-induced receptor phos- phorylation of both HER2 and HER3 more efficiently than monomeric affibody molecules. A second approach to enhance the potential of affibody molecules in tumor targeting is described in the second study, where monomeric HER3-binding affibody molecules were engineered to increase their affinity for HER3. The resulting variants showed a 20-fold in- creased affinity and higher capacity to inhibit cancer cell growth. Combining the findings of the first two studies, the third study describes the evaluation of a HER3-targeting bivalent affibody construct for potential application as a therapeutic. Here, the bivalent construct inhibited cancer cell growth in vitro and was found to slow down tumor growth in mice, while being well tolerated and showing no visible toxicity. The fourth study built upon these findings and compares a very similar bivalent construct to the clinically-investigated HER3-specific monoclonal antibody seribantumab. The affibody construct showed very comparable efficacy with the antibody in terms of decreasing tumor growth rate and ex- tending mouse survival. Collectively, these works describe for the first time the use of alternative affinity protein constructs with therapeutic potential targeting HER3.
  •  
2.
  • Ellmark, Peter, et al. (författare)
  • Tumor-directed immunotherapy can generate tumor-specific T cell responses through localized co-stimulation
  • 2017
  • Ingår i: Cancer Immunology and Immunotherapy. - : Springer Science and Business Media LLC. - 0340-7004 .- 1432-0851. ; 66:1, s. 1-7
  • Tidskriftsartikel (refereegranskat)abstract
    • The most important goals for the field of immuno-oncology are to improve the response rate and increase the number of tumor indications that respond to immunotherapy, without increasing adverse side effects. One approach to achieve these goals is to use tumor-directed immunotherapy, i.e., to focus the immune activation to the most relevant part of the immune system. This may improve anti-tumor efficacy as well as reduce immune-related adverse events. Tumor-directed immune activation can be achieved by local injections of immune modulators in the tumor area or by directing the immune modulator to the tumor using bispecific antibodies. In this review, we focus on therapies targeting checkpoint inhibitors and co-stimulatory receptors that can generate tumor-specific T cell responses through localized immune activation.
  •  
3.
  • Mangsbo, Sara M, et al. (författare)
  • The human agonistic CD40 antibody ADC-1013 eradicates bladder tumors and generates T cell dependent tumor immunity.
  • 2015
  • Ingår i: Clinical Cancer Research. - 1078-0432 .- 1557-3265. ; 21:5, s. 1115-1126
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Local administration of immune-activating antibodies may increase the efficacy and reduce the immune-related adverse events associated with systemic immunotherapy of cancer. Here we report the development and affinity maturation of a fully human agonistic CD40 antibody (IgG1), ADC-1013. Experimental Design: We have used molecular engineering to generate an agonistic antibody with high affinity for CD40. The functional activity of ADC-1013 has been investigated in human and murine in vitro models. The in vivo effect has been investigated in two separate bladder cancer models, both using human xenograft tumors in immune deficient NSG mice and using a syngeneic bladder cancer model in a novel human CD40 transgenic mouse. Results: Activation of dendritic cells (DCs) by ADC-1013 results in up-regulation of the co-stimulatory molecules CD80 and CD86, and secretion of IL-12. ADC-1013 also activates dendritic cells from human CD40 transgenic mice, and peptide-pulsed and ADC-1013-stimulated dendritic cells induce antigen-specific T cell proliferation in vitro. In vivo, treatment with ADC-1013 in a syngeneic bladder cancer model, negative for hCD40, induces significant anti-tumor effects and long-term tumor-specific immunity. Further, ADC-1013 demonstrates significant anti-tumor effects in a human bladder cancer transplanted into immunodeficient NSG mice. Conclusions: Our data demonstrate that ADC-1013 induces long-lasting anti-tumor responses and immunological memory mediated by CD40 stimulation. To the best of our knowledge, ADC-1013 represents the first immunomodulatory antibody developed for local immunotherapy of cancer.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy