SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Fureby C.) srt2:(2006-2009)"

Sökning: WFRF:(Fureby C.) > (2006-2009)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Drikakis, D., et al. (författare)
  • Numerics for iles : Limiting algorithms
  • 2007
  • Bok (övrigt vetenskapligt/konstnärligt)abstract
    • Large eddy simulation (LES) has emerged as the next-generation simulation tool for handling complex engineering, geophysical, astrophysical, and chemically reactive flows. As LES moves from being an academic tool to being a practical simulation strategy, the robustness of the LES solvers becomes a key issue to be concerned with, in conjunction with the classical and well-known issue of accuracy. For LES to be attractive for complex flows, the computational codes must be readily capable of handling complex geometries. Today, most LES codes use hexahedral elements; the grid-generation process is therefore cumbersome and time consuming. In the future, the use of unstructured grids, as used in Reynolds-averaged NavierâStokes (RANS) approaches, will also be necessary for LES. This will particularly challenge the development of high-order unstructured LES solvers. Because it does not require explicit filtering, Implicit LES (ILES) has some advantages over conventional LES; however, numerical requirements and issues are otherwise virtually the same for LES and ILES. In this chapterwe discuss an unstructured finite-volume methodology for both conventional LES and ILES, that is particularly suited for ILES. We believe that the next generation of practical computational fluid dynamics (CFD) models will involve structured and unstructured LES, using high-order flux-reconstruction algorithms and taking advantage of their built-in subgrid-scale (SGS) models. ILES based on functional reconstruction of the convective fluxes by use of high-resolution hybrid methods is the subject of this chapter. We use modified equation analysis (MEA) to show that the leading-order truncation error terms introduced by such methods provide implicit SGS models similar in form to those of conventional mixed SGS models.
  •  
2.
  • Berglund, Magnus, et al. (författare)
  • LES of supersonic combustion in a scramjet engine model
  • 2007
  • Ingår i: Proceedings of the Combustion Institute. - : Elsevier BV. - 1540-7489. ; 31, s. 2497-2504
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, Large Eddy Simulation (LES) has been used to examine supersonic flow and combustion in a model scramjet combustor. The LES model is based on an unstructured finite volume discretization, using total variational diminishing flux reconstruction, of the filtered continuity, momentum, enthalpy, and passive/reactive scalar equations, used to describe the combustion process. The configuration used is similar to the laboratory scrarmjet at the Institute for Chemical Propulsion of the German Aerospace Center (DLR) and consists of a one-sided divergent channel with a wedge-shaped flameholder at the base of which hydrogen is injected. Here, we investigate supersonic flow with hydrogen injection and supersonic flow with hydrogen injection and combustion. For the purpose of validation, the LES results are compared with experimental data for velocity and temperature at different cross-sections. In addition, qualitative comparisons are also made between predicted and measured shadowgraph images. The LES computations are capable of predicting both the non-reacting and reacting flowfields reasonably well-in particular we notice that the LES model identifies and differentiates between peculiarities of the flowfields found in the experiments. (c) 2006 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
  •  
3.
  • Duwig, Christophe, et al. (författare)
  • Large eddy simulation of unsteady lean stratified premixed combustion
  • 2007
  • Ingår i: Combustion and Flame. - : Elsevier BV. - 0010-2180. ; 151:1-2, s. 85-103
  • Tidskriftsartikel (refereegranskat)abstract
    • Premixed turbulent flame-based technologies are rapidly growing in importance, with applications to modern clean combustion devices for both power generation and aeropropulsion. However, the gain in decreasing harmful emissions might be canceled by rising combustion instabilities. Unwanted unsteady flame phenomena that might even destroy the whole device have been widely reported and are subject to intensive studies. In the present paper, we use unsteady numerical tools for simulating an unsteady and well-documented flame. Computations were performed for nonreacting, perfectly premixed and stratified premixed cases using two different numerical codes and different large-eddy-simulation-based flamelet models. Nonreacting simulations are shown to agree well with experimental data, with the LES results capturing the mean features (symmetry breaking) as well as the fluctuation level of the turbulent flow. For reacting cases, the uncertainty induced by the time-averaging technique limited the comparisons. Given an estimate of the uncertainty, the numerical results were found to reproduce well the experimental data in terms both of mean flow field and of fluctuation levels. In addition, it was found that despite relying on different assumptions/simplifications, both numerical tools lead to similar predictions, giving confidence in the results. Moreover, we studied the flame dynamics and particularly the response to a periodic pulsation. We found that above a certain excitation level, the flame dynamic changes and becomes rather insensitive to the excitation/instability amplitude. Conclusions regarding the self-growth of thermoacoustic waves were drawn. (c) 2007 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
  •  
4.
  • Fureby, C., et al. (författare)
  • Incompressible wall-bounded flows
  • 2007
  • Bok (övrigt vetenskapligt/konstnärligt)abstract
    • Almost all flows of practical interest are turbulent, and thus the simulation of turbulent flow and its diversity of flow characteristics remains one of the most challenging areas in the field of classical physics. In many situations the fluid can be considered incompressible; that is, its density is virtually constant in the frame of reference, moving locally with the fluid, but density gradients may be passively convected with the flow. Examples of such flows of engineering importance are as follows: external flows, such as those around cars, ships, buildings, chimneys, masts, and suspension bridges; and internal flows, such as those in intake manifolds, cooling and ventilation systems, combustion engines, and applications from the areas of biomedicine, the process industry, the food industry, and so on. In contrast to free flows (ideally considered as homogeneous and isotropic), wall-bounded flows are characterized by much less universal properties than free flows and are thus even more challenging to study. The main reason for this is that, as the Reynolds number increases, and the thickness of the viscous sublayer decreases, the number of grid points required to resolve the near-wall flow increases. The two basic ways of computing turbulent flows have traditionally been direct numerical simulation (DNS) and Reynolds-averaged NavierâStokes (RANS) modeling. In the former the time-dependent NavierâStokes equations (NSE) are solved numerically, essentially without approximations. In the latter, only time scales longer than those of the turbulent motion are computed, and the effect of the turbulent velocity fluctuations is modeled with a turbulence model. 
  •  
5.
  • Liefvendahl, Mattias, et al. (författare)
  • LES and DES of high reynolds number wall bounded flows
  • 2006
  • Konferensbidrag (refereegranskat)abstract
    • High Reynolds number wall bounded flow is here investigated using Large Eddy Simulation (LES), Detached Eddy Simulation (DES) and Reynolds Averaged Navier Stokes (RANS). The first case considered is the fully developed turbulent channel flow at Re, « 395,590,1800 and 10,000. This flow clearly indicates the development of the undisturbed boundary layer and related events, such as streaky structures, hairpin vortices and ejection events. The second case is the flow over an axisymmetric hill in a channel, here the flow contains complex structures such as a turbulent boundary layer with several unsteady separations and reattachments. It is three-dimensional due to both streamwise and spanwise pressure gradients on the lee-side of the hill. The shallowness of the separation region makes the flow a demanding test case for any computational fluid dynamics model. The third case is the flow past an axisymmetric submarine hull with an elliptic forebody and a smoothly tapered stern - the DARPA Suboff model AFF-1. This flow case is highly demanding due to the long midship section, on which the boundary layer is developed, in combination with the elliptic forebody and the tapered stern. Both LES and DES performs well in all cases considered, while RANS has slightly lower accuracy in the channel flow and the axisymmetric hull, and fails to predict some flow features for the axisymmetric hill. Also DES has some problems with the axisymmetric hill case, related to the inlet condition of the modified eddy viscosity.
  •  
6.
  • Nogenmyr, Karl-Johan, et al. (författare)
  • Large eddy simulation and laser diagnostic studies on a low swirl stratified premixed flame
  • 2009
  • Ingår i: Combustion and Flame. - : Elsevier BV. - 0010-2180 .- 1556-2921. ; 156:1, s. 25-36
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents numerical simulations and laser diagnostic experiments of a swirling lean premixed methane/air flame with an aim to compare different Large Eddy Simulations (LES) models for reactive flows. An atmospheric-pressure laboratory swirl burner has been developed wherein lean premixed methane/air is injected in an unconfined low-speed flow of air. The flame is stabilized above the burner rim in a moderate swirl flow, triggering weak vortex breakdown in the downstream direction. Both stereoscopic (3-component) PIV and 2-component PIV are used to investigate the flow. Filtered Rayleigh scattering is used to examine the temperature field in the leading flame front. Acetone-Planar Laser Induced Fluorescence (PLIF) is applied to examine the fuel distribution. The experimental data are used to assess two different LES models: one based on level-set G-equation and flamelet chemistry, and the other based on finite rate chemistry with reduced kinetics. The two LES models treat the chemistry differently, which results in different predictions of the flame dynamic behavior and statistics. Yet, great similarity of flame structures was predicted by both models. The LES and experimental data reveal several intrinsic features of the low swirl flame such as the W-shape at the leading front, the highly wrinkled fronts in the shear layers, and the existence of extinction holes in the trailing edge of the flame. The effect of combustion models, the numerical solvers and boundary conditions on the flame and flow predictions was systematically examined. (c) 2008 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
  •  
7.
  •  
8.
  • Persson, T., et al. (författare)
  • Numerical investigation of the flow over an axisymmetric hill using LES, DES, and RANS
  • 2006
  • Ingår i: Journal of Turbulence. - : Informa UK Limited. - 1468-5248. ; 7, s. 1-17
  • Tidskriftsartikel (refereegranskat)abstract
    • The flow around an axisymmetric hill, mounted in a channel with a fully developed approach flow, is investigated. The flow contains complex structures such as a turbulent boundary layer with several unsteady separations and reattachments. It is highly three-dimensional due to both streamwise and spanwise pressure gradients on the leeside of the hill. The shallowness of the separation region makes the flow a very demanding test case for any computational fluid dynamics model. Three different strategies are used in this study: Reynolds-averaged Navier-Stokes (RANS), large eddy simulation (LES), and detached eddy simulation (DES). The computed flow, in terms of velocity and pressure profiles, compared with measurement data and the results show that LES and DES are indeed capable of handling this complicated flow in a correct way whereas RANS clearly fails to predict several important flow features. Furthermore, the influence of the size of the computational domain, the grid resolution and the inflow boundary conditions is also studied. It is found that the pressure field is sensitive to the location of the inlet and the DES model is very sensitive to the inlet boundary condition on the eddy viscosity. To significantly improve the predictions, it is believed that the near-wall resolution must be increased substantially, in particular in the spanwise direction, or a better wall handling has to be incorporated. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy