SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gärdenäs Annemieke I. 1962) srt2:(2017)"

Sökning: WFRF:(Gärdenäs Annemieke I. 1962) > (2017)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Choma, Michal, et al. (författare)
  • Recovery of the ectomycorrhizal community after termination of long-term nitrogen fertilisation of a boreal Norway spruce forest
  • 2017
  • Ingår i: Fungal Ecology. - : Elsevier BV. - 1754-5048 .- 1878-0083. ; 29, s. 116-122
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2016 Elsevier Ltd and British Mycological Society.Ectomycorrhizal fungi (ECM) are a fundamental component of boreal forests promoting tree growth and participating in soil nutrient cycling. Increased nitrogen (N) input is known to largely influence ECM communities but their potential recovery is not well understood. Therefore, we studied the effects of long-term N-fertilisation on ECM communities, and their recovery after termination of N treatment. Fungal ITS sequencing data indicated that N-fertilisation (34 kg N ha-1 y-1) for 46 y decreased the relative abundance of ECM species in the fungal community and suppressed originally dominating medium-distance fringe exploration types adapted to N-limited conditions, while the ECM diversity remained unaffected. In other plots, 23 y after termination of fertilisation at 73 kg N ha-1 y-1 for 23 y, the relative abundance of ECM species shifted closer to, but did not reach, control levels. These observations indicate only slow recovery of ECM community, likely due to a high soil N retention capacity.
  •  
2.
  • Gärdenäs, Annemieke I., 1962, et al. (författare)
  • The grain storage of wet-deposited caesium and strontium by spring wheat - A modelling study based on a field experiment
  • 2017
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697. ; 574, s. 1313-1325
  • Tidskriftsartikel (refereegranskat)abstract
    • The aims of this study were to extend the Tracey model in order to quantify and to analyse spring wheat's grain storage dynamics of wet-deposited radionuclides. Tracey, a dynamic model of trace element cycling in terrestrial ecosystems, was extended with descriptions of wet-deposition, interception, foliar uptake and radioactive decay. Radionuclide fluxes were set proportional to corresponding water or carbon fluxes, simulated with CoupModel. The extended Tracey was calibrated against experimental data, where Cs-134 and Sr-85 were deposited on spring wheat at six growth stages in 2010 and 2011. Sensitivities of grain storage to wheat's and radionuclide properties were assessed, using the Eikos software, by 1000 Monte Carlo simulations for each of the 48 scenarios (combination of 2 radionuclides, 1 foliar uptake, 2 root uptake approaches, 6 deposition treatments and 2 years). Simulations were accepted if simulated grain storage values were within 95% confidence intervals (CI) of measurements. We found that 15% of Cs-134 and Sr-85 simulations for 2011, and 6% of the 2010 simulations met the Cl-criterion. Foliar uptake accounted for 99% and 90% of total plant uptake of Cs-134 and Sr-85, respectively. Mean simulated grain storage at harvest increased with lateness of deposition, as the stored proportion of radionuclide deposited was 0.02% when deposition was before flowering, 2% between flowering and ripening, and 5% (2010) or 10% (2011, late harvest) after ripening, respectively. Similarly, the property that governed grain storage depended on the growth stage at time of deposition; stem and leaf fixation rates (deposition before flowering), grain fixation rates (between flowering and ripening) and grains' interception capacity (after ripening). We conclude that grains' interception capacities can be used to predict grain storage of radionuclides deposited in the riskiest period, i.e. close to harvest. (C) 2016 The Authors. Published by Elsevier B.V.
  •  
3.
  • Mjöfors, Kristina, et al. (författare)
  • Indications that site preparation increases forest ecosystem carbon stocks in the long term
  • 2017
  • Ingår i: Scandinavian Journal of Forest Research. - : Informa UK Limited. - 0282-7581 .- 1651-1891. ; 32:8, s. 717-725
  • Tidskriftsartikel (refereegranskat)abstract
    • Mechanical site preparation (MSP) causes a mixing disturbance of the soil, which may increase decomposition of soil organic matter and subsequent carbon (C) dioxide emissions to the atmosphere. MSP also promotes the establishment and growth of tree seedlings, and hence ecosystem C fixation. However, there are uncertainties regarding the net effects of MSP on C stocks at the ecosystem scale. To assess decennial effects of MSP on ecosystem C stocks, C stocks in soil, ground vegetation and trees at three experimental forest sites with Pinus contorta, Pinus sylvestris and Picea abies in Sweden were sampled and measured for ca. 25 years in a control and after three MSP treatments: disc trenching, mounding and ploughing. After 25 years, all of the MSP treatments resulted in larger ecosystem C stocks than the control treatment due to positive effects on the tree biomass C stock. The tree C stock was highest after ploughing, intermediate after mounding or disc trenching and lowest in untreated control plots at all experimental sites. The MSP treatments did not affect the soil C stocks down to 30cm. We recommend mounding or disc trenching to promote C sequestration as they disturb sites’ ecological, aesthetic and recreation values less than ploughing.
  •  
4.
  • Rappe George, Martin, et al. (författare)
  • Indications that long-term nitrogen loading limits carbon resources for soil microbes
  • 2017
  • Ingår i: Soil Biology and Biochemistry. - : Elsevier BV. - 0038-0717 .- 1879-3428. ; 115, s. 310-321
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbial communities in the organic horizon (O-horizon) of forest soils play key roles in terrestrial nitrogen (N) cycling, but effects on them of long-term high N loading, by N deposition or experimental addition, are not fully understood. Thus, we investigated N-loading effects on soil microbial biomass N, carbon (C) and phosphorus stoichiometry, hydrolytic and oxidative enzymes, community composition (via phospholipid fatty acids, PLFA) and soil chemistry of the O-horizon in study plots of three well-studied experimental Norway spruce (Picea abies) forests in Sweden and the Czech Republic. These forests span substantial gradients in current N deposition, experimental N addition and nitrate (NO3 −) leaching. Current N deposition ranges from ∼3 kg ha−1 year−1 of N in central Sweden (Stråsan) to ∼15 kg ha−1 year−1 of N in SW Sweden (Skogaby) and Czech Republic (Čertovo). Furthermore, accumulated historical N loading during 1950–2000 (which include experimental N addition performed at Stråsan and Skogaby) ranged ∼200–∼2000 kg ha−1 of N. Across all sites and treatments, current NO3 − leaching ranged from low (∼0.1 kg ha−1 year−1 of N) at Stråsan, to high (∼15 kg ha−1 year−1 of N) at Skogaby and Čertovo. We found significantly lower C/N ratios and greater amounts of extractable inorganic N species in the forest soils’ O-horizons at the high N loading plots. Microbial biomass and basal respiration decreased under experimental N addition treatments and tended to decrease with increased N deposition. Similarly, activities of hydrolytic enzyme activity associated with N acquisition were lower, although differences in activities at specific sites with the highest and intermediate historical N deposition levels failed statistical significance. Conversely, activities of soil hydrolytic enzymes associated with C acquisition were greater in study plots exposed high N loading. PLFA profiles indicated shifts in microbial community composition induced by long-term N load, towards higher and lower relative abundance of Gram-positive and Gram-negative bacteria, respectively (but no changes in fungal relative abundance). Taken together, our results suggest that long-term N loading of N-limited Norway spruce forests aggravates limitation of other resources, likely of C, for soil microbial communities. Although microbial variables in the soil O-horizon differed between plots exposed to low and high current N loading, microbial variables in plots that leached small amounts and large amounts of NO3 − exposed to high N load were similar. © 2017
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy