SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(GRINYO J) srt2:(2020-2022)"

Sökning: WFRF:(GRINYO J) > (2020-2022)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Corbera, G., et al. (författare)
  • Local-scale feedbacks influencing cold-water coral growth and subsequent reef formation
  • 2022
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite cold-water coral (CWC) reefs being considered biodiversity hotspots, very little is known about the main processes driving their morphological development. Indeed, there is a considerable knowledge gap in quantitative experimental studies that help understand the interaction between reef morphology, near-bed hydrodynamics, coral growth, and (food) particle transport processes. In the present study, we performed a 2-month long flume experiment in which living coral nubbins were placed on a reef patch to determine the effect of a unidirectional flow on the growth and physiological condition of Lophelia pertusa. Measurements revealed how the presence of coral framework increased current speed and turbulence above the frontal part of the reef patch, while conditions immediately behind it were characterised by an almost stagnant flow and reduced turbulence. Owing to the higher current speeds that likely promoted a higher food encounter rate and intake of ions involved in the calcification process, the coral nubbins located on the upstream part of the reef presented a significantly enhanced average growth and a lower expression of stress-related enzymes than the downstream ones. Yet, further experiments would be needed to fully quantify how the variations in water hydrodynamics modify particle encounter and ion intake rates by coral nubbins located in different parts of a reef, and how such discrepancies may ultimately affect coral growth. Nonetheless, the results acquired here denote that a reef influenced by a unidirectional water flow would grow into the current: a pattern of reef development that coincides with that of actual coral reefs located in similar water flow settings. Ultimately, the results of this study suggest that at the local scale coral reef morphology has a direct effect on coral growth thus, indicating that the spatial patterns of living CWC colonies in reef patches are the result of spatial self-organisation.
  •  
2.
  • Montseny, Maria, et al. (författare)
  • Active Ecological Restoration of Cold-Water Corals: Techniques, Challenges, Costs and Future Directions
  • 2021
  • Ingår i: Frontiers in Marine Science. - : Frontiers Media SA. - 2296-7745. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • Cold-water coral (CWC) habitats dwell on continental shelves, slopes, seamounts, and ridge systems around the world’s oceans from 50 to 4000 m depth, providing heterogeneous habitats which support a myriad of associated fauna. These highly diverse ecosystems are threatened by human stressors such as fishing activities, gas and oil exploitation, and climate change. Since their life-history traits such as long lifespan and slow growth rates make CWCs very vulnerable to potential threats, it is a foremost challenge to explore the viability of restoration actions to enhance and speed up their recovery. In contrast to terrestrial and shallow-water marine ecosystems, ecological restoration in deep marine environments has received minimal attention. This review, by means of a systematic literature search, aims to identify CWC restoration challenges, assess the most suitable techniques to restore them, and discuss future perspectives. Outcomes from the few restoration actions performed to date on CWCs, which have lasted between 1 to 4 years, provide evidence of the feasibility of coral transplantation and artificial reef deployments. Scientific efforts should focus on testing novel and creative restoration techniques, especially to scale up to the spatial and temporal scales of impacts. There is still a general lack of knowledge about the biological, ecological and habitat characteristics of CWC species exploration of which would aid the development of effective restoration measures. To ensure the long-term viability and success of any restoration action it is essential to include holistic and long-term monitoring programs, and to ideally combine active restoration with natural spontaneous regeneration (i.e., passive restoration) strategies such as the implementation of deep-sea marine protected areas (MPAs). We conclude that a combination of passive and active restoration approaches with involvement of local society would be the best optimal option to achieve and ensure CWC restoration success.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy