SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gaebler Michael) srt2:(2021)"

Sökning: WFRF:(Gaebler Michael) > (2021)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Koenig, Julian, et al. (författare)
  • Cortical thickness and resting-state cardiac function across the lifespan : A cross-sectional pooled mega-analysis
  • 2021
  • Ingår i: Psychophysiology. - : Wiley. - 0048-5772 .- 1469-8986 .- 1540-5958. ; 58:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the association between autonomic nervous system [ANS] function and brain morphology across the lifespan provides important insights into neurovisceral mechanisms underlying health and disease. Resting-state ANS activity, indexed by measures of heart rate [HR] and its variability [HRV] has been associated with brain morphology, particularly cortical thickness [CT]. While findings have been mixed regarding the anatomical distribution and direction of the associations, these inconsistencies may be due to sex and age differences in HR/HRV and CT. Previous studies have been limited by small sample sizes, which impede the assessment of sex differences and aging effects on the association between ANS function and CT. To overcome these limitations, 20 groups worldwide contributed data collected under similar protocols of CT assessment and HR/HRV recording to be pooled in a mega-analysis (N = 1,218 (50.5% female), mean age 36.7 years (range: 12–87)). Findings suggest a decline in HRV as well as CT with increasing age. CT, particularly in the orbitofrontal cortex, explained additional variance in HRV, beyond the effects of aging. This pattern of results may suggest that the decline in HRV with increasing age is related to a decline in orbitofrontal CT. These effects were independent of sex and specific to HRV; with no significant association between CT and HR. Greater CT across the adult lifespan may be vital for the maintenance of healthy cardiac regulation via the ANS—or greater cardiac vagal activity as indirectly reflected in HRV may slow brain atrophy. Findings reveal an important association between CT and cardiac parasympathetic activity with implications for healthy aging and longevity that should be studied further in longitudinal research.
  •  
2.
  • Velez Quintero, Luis Eduardo, et al. (författare)
  • Excite-O-Meter : Software Framework to Integrate Heart Activity in Virtual Reality
  • 2021
  • Ingår i: 2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). - : IEEE. - 9781665401586 ; , s. 357-366
  • Konferensbidrag (refereegranskat)abstract
    • Bodily signals can complement subjective and behavioral measures to analyze human factors, such as user engagement or stress, when interacting with virtual reality (VR) environments. Enabling widespread use of (also the real-time analysis) of bodily signals in VR applications could be a powerful method to design more user-centric, personalized VR experiences. However, technical and scientific challenges (e.g., cost of research-grade sensing devices, required coding skills, expert knowledge needed to interpret the data) complicate the integration of bodily data in existing interactive applications. This paper presents the design, development, and evaluation of an open-source software framework named Excite-O-Meter. It allows existing VR applications to integrate, record, analyze, and visualize bodily signals from wearable sensors, with the example of cardiac activity (heart rate and its variability) from the chest strap Polar H10. Survey responses from 58 potential users determined the design requirements for the framework. Two tests evaluated the framework and setup in terms of data acquisition/analysis and data quality. Finally, we present an example experiment that shows how our tool can be an easy-to-use and scientifically validated tool for researchers, hobbyists, or game designers to integrate bodily signals in VR applications.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy