SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gagliardi Laura) srt2:(2020-2024)"

Sökning: WFRF:(Gagliardi Laura) > (2020-2024)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bao, Jie J., et al. (författare)
  • Analytic gradients for compressed multistate pair-density functional theory
  • 2022
  • Ingår i: Molecular Physics. - : Taylor & Francis Group. - 0026-8976 .- 1362-3028. ; 120:19-20
  • Tidskriftsartikel (refereegranskat)abstract
    • Photochemical reactions often involve states that are closely coupled due to near degeneracies, for example by proximity to conical intersections. Therefore, a multistate method is used to accurately describe these states; for example, ordinary perturbation theory is replaced by quasidegenerate perturbation theory. Multiconfiguration pair-density functional theory (MC-PDFT) provides an efficient way to approximate the full dynamical correlation energy of strongly correlated systems, and we recently proposed compressed multistate pair-density functional theory (CMS-PDFT) to treat closely coupled states. In the present paper, we report the implementation of analytic gradients for CMS-PDFT in both OpenMolcas and PySCF, and we illustrate the use of these gradients by applying the method to the excited states of formaldehyde and phenol.
  •  
2.
  • Calio, Paul B., et al. (författare)
  • Minimum-Energy Conical Intersections by Compressed Multistate Pair-Density Functional Theory
  • 2024
  • Ingår i: Journal of Physical Chemistry A. - : American Chemical Society (ACS). - 1089-5639 .- 1520-5215. ; 128:9, s. 1698-1706
  • Tidskriftsartikel (refereegranskat)abstract
    • Compressed multistate pair-density functional theory (CMS-PDFT) is a multistate version of multiconfiguration pair-density functional theory that can capture the correct topology of coupled potential energy surfaces (PESs) around conical intersections. In this work, we develop interstate coupling vectors (ISCs) for CMS-PDFT in the OpenMolcas and PySCF/mrh electronic structure packages. Yet, the main focus of this work is using ISCs to calculate minimum-energy conical intersections (MECIs) by CMS-PDFT. This is performed using the projected constrained optimization method in OpenMolcas, which uses ISCs to restrain the iterations to the conical intersection seam. We optimize the S1/S0 MECIs for ethylene, butadiene, and benzene and show that CMS-PDFT gives smooth PESs in the vicinities of the MECIs. Furthermore, the CMS-PDFT MECIs are in good agreement with the MECI calculated by the more expensive XMS-CASPT2 method.
  •  
3.
  • Jeong, WooSeok, et al. (författare)
  • Automation of Active Space Selection for Multireference Methods via Machine Learning on Chemical Bond Dissociation
  • 2020
  • Ingår i: Journal of Chemical Theory and Computation. - : AMER CHEMICAL SOC. - 1549-9618 .- 1549-9626. ; 16:4, s. 2389-2399
  • Tidskriftsartikel (refereegranskat)abstract
    • Predicting and understanding the chemical bond is one of the major challenges of computational quantum chemistry. Kohn-Sham density functional theory (KS-DFT) is the most common method, but approximate density functionals may not be able to describe systems where multiple electronic configurations are equally important. Multiconfigurational wave functions, on the other hand, can provide a detailed understanding of the electronic structures and chemical bonds of such systems. In the complete active space self-consistent field (CASSCF) method, one performs a full configuration interaction calculation in an active space consisting of active electrons and active orbitals. However, CASSCF and its variants require the selection of these active spaces. This choice is not black box; it requires significant experience and testing by the user, and thus active space methods are not considered particularly user-friendly and are employed only by a minority of quantum chemists. Our goal is to popularize these methods by making it easier to make good active space choices. We present a machine learning protocol that performs an automated selection of active spaces for chemical bond dissociation calculations of main group diatomic molecules. The protocol shows high prediction performance for a given target system as long as a properly correlated system is chosen for training. Good active spaces are correctly predicted with a considerably better success rate than random guess (larger than 80% precision for most systems studied). Our automated machine learning protocol shows that a "black-box" mode is possible for facilitating and accelerating the large-scale calculations on multireference systems where single-reference methods such as KS-DFT cannot be applied.
  •  
4.
  • Manni, Giovanni Li, et al. (författare)
  • The OpenMolcas Web : A Community-Driven Approach to Advancing Computational Chemistry
  • 2023
  • Ingår i: Journal of Chemical Theory and Computation. - : American Chemical Society (ACS). - 1549-9618 .- 1549-9626. ; 19:20, s. 6933-6991
  • Tidskriftsartikel (refereegranskat)abstract
    • The developments of the open-source OpenMolcas chemistry software environment since spring 2020 are described, with a focus on novel functionalities accessible in the stable branch of the package or via interfaces with other packages. These developments span a wide range of topics in computational chemistry and are presented in thematic sections: electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report offers an overview of the chemical phenomena and processes OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations.
  •  
5.
  • Scott, Thais R., et al. (författare)
  • Analytic gradients for multiconfiguration pair-density functional theory with density fitting : Development and application to geometry optimization in the ground and excited states
  • 2021
  • Ingår i: Journal of Chemical Physics. - : American Institute of Physics (AIP). - 0021-9606 .- 1089-7690. ; 154:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Density fitting reduces the computational cost of both energy and gradient calculations by avoiding the computation and manipulation of four-index electron repulsion integrals. With this algorithm, one can efficiently optimize the geometries of large systems with an accurate multireference treatment. Here, we present the derivation of multiconfiguration pair-density functional theory for energies and analytic gradients with density fitting. Six systems are studied, and the results are compared to those obtained with no approximation to the electron repulsion integrals and to the results obtained by complete active space second-order perturbation theory. With the new approach, there is an increase in the speed of computation with a negligible loss in accuracy. Smaller grid sizes have also been used to reduce the computational cost of multiconfiguration pair-density functional theory with little effect on the optimized geometries and gradient values.
  •  
6.
  • Simons, Matthew C., et al. (författare)
  • Beyond Radical Rebound : Methane Oxidation to Methanol Catalyzed by Iron Species in Metal–Organic Framework Nodes
  • 2021
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 143:31, s. 12165-12174
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent work has exploited the ability of metalorganic frameworks (MOFs) to isolate Fe sites that mimic the structures of sites in enzymes that catalyze selective oxidations at low temperatures, opening new pathways for the valorization of underutilized feedstocks such as methane. Questions remain as to whether the radical-rebound mechanism commonly invoked in enzymatic and homogeneous systems also applies in these rigid-framework materials, in which resisting the overoxidation of desired products is a major challenge. We demonstrate that MOFs bearing Fe(II) sites within Fe-3-mu(3)-oxo nodes active for conversion of CH4 + N2O mixtures (368-408 K) require steps beyond the radical-rebound mechanism to protect the desired CH3OH product. Infrared spectra and density functional theory show that CH3OH(g) is stabilized as Fe(III)-OCH3 groups on the MOF via hydrogen atom transfer with Fe(III)-OH groups, eliminating water. Consequently, upon addition of a protonic zeolite in inter- and intrapellet mixtures with the MOF, we observed increases in (CHOH)-O-3 selectivity with increasing ratio and proximity of zeolitic H+ to MOF-based Fe(II) sites, as methanol is protected within the zeolite. We infer from the data that (CHOH)-O-3( g) is formed via the radical-rebound mechanism on Fe(II) sites but that subsequent transport and dehydration steps are required to protect (CHOH)-O-3( g) from overoxidation. The results demonstrate that the radical-rebound mechanism commonly invoked in this chemistry is insufficient to explain the reactivity of these systems, that the selectivity-controlling steps involve both chemical and physical rate phenomena, as well as offering a strategy to mitigate overoxidation in these and similar systems.
  •  
7.
  • Yang, Dong, et al. (författare)
  • Synthesis and characterization of tetrairidium clusters in the metal organic framework UiO-67 : Catalyst for ethylene hydrogenation
  • 2020
  • Ingår i: Journal of Catalysis. - : Elsevier BV. - 0021-9517 .- 1090-2694. ; 382, s. 165-172
  • Tidskriftsartikel (refereegranskat)abstract
    • Clusters that are well approximated as tetrairidium were synthesized from Ir(C2H4)2 complexes anchored to the Zr6O8 nodes of the metal organic framework (MOF) UiO-67 by treatment in H2 at 353 K. The conversion taking place within the porous MOF structure was monitored by infrared and X-ray absorption spectroscopies, which provide evidence of tetrairidium clusters formed from the mononuclear precursors. The supported clusters were tested in a flow reactor as catalysts for ethylene conversion at 298 K and atmospheric pressure with a 1:1 M feed ratio of H2 to ethylene. The results show that the turnover frequency (per Ir atom) characterizing the clusters is twice that of the mononuclear iridium complexes, with both catalysts being active for hydrogenation and dimerization and the clusters being less selective than the complexes for dimerization. Density functional theory calculations of the reaction energetics are in good accord with experiment, showing that the rate-determining step for the hydrogenation on the isolated iridium complexes is the H2 activation on iridium, whereas the hydrogenation of an iridium-bound ethyl ligand is rate determining for the cluster.
  •  
8.
  • Yang, Dong, et al. (författare)
  • Tuning Catalytic Sites on Zr6O8 Metal–Organic Framework Nodes via Ligand and Defect Chemistry Probed with tert-Butyl Alcohol Dehydration to Isobutylene
  • 2020
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 142:17, s. 8044-8056
  • Tidskriftsartikel (refereegranskat)abstract
    • Metal–organic frameworks (MOFs) have drawn wide attention as candidate catalysts, but some essential questions about their nature and performance have barely been addressed. (1) How do OH groups on MOF nodes act as catalytic sites? (2) What are the relationships among these groups, node defects, and MOF stability, and how do reaction conditions influence them? (3) What are the interplays between catalytic properties and transport limitations? To address these questions, we report an experimental and theoretical investigation of the catalytic dehydration of tert-butyl alcohol (TBA) used to probe the activities of OH groups of Zr6O8 nodes in the MOFs UiO-66 and MOF-808, which have different densities of vacancy sites and different pore sizes. The results show that (1) terminal node OH groups are formed as formate and/or acetate ligands present initially on the nodes react with TBA to form esters, (2) these OH groups act as catalytic sites for TBA dehydration to isobutylene, and (3) TBA also reacts to break node–linker bonds to form esters and thereby unzip the MOFs. The small pores of UiO-66 limit the access of TBA and the reaction with the formate/acetate ligands bound within the pores, whereas the larger pores of MOF-808 facilitate transport and favor reaction in the MOF interior. However, after removal of the formate and acetate ligands by reaction with methanol to form esters, interior active sites in UiO-66 become accessible for the reaction of TBA, with the activity depending on the density of defect sites with terminal OH groups. The number of vacancies on the nodes is important in determining a tradeoff between the catalytic activity of a MOF and its resistance to unzipping. Computations at the level of density functional theory show how the terminal OH groups on node vacancies act as Brønsted bases, facilitating TBA dehydration via a carbocation intermediate in an E1 mechanism; the calculations further illuminate the comparable chemistry of the unzipping.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy