SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gao Yijun) srt2:(2020-2022)"

Sökning: WFRF:(Gao Yijun) > (2020-2022)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Teh, Zhi Li, et al. (författare)
  • Enhanced Power Conversion Efficiency via Hybrid Ligand Exchange Treatment of p-Type PbS Quantum Dots
  • 2020
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 12:20, s. 22751-22759
  • Tidskriftsartikel (refereegranskat)abstract
    • PbS quantum dot solar cells (QDSCs) have emerged as a promising low-cost, solution-processable solar energy harvesting device and demonstrated good air stability and potential for large-scale commercial implementation. PbS QDSCs achieved a record certified efficiency of 12% in 2018 by utilizing an n+–n–p device structure. However, the p-type layer has generally suffered from low carrier mobility due to the organic ligand 1,2-ethanedithiol (EDT) that is used to modify the quantum dot (QD) surface. The low carrier mobility of EDT naturally limits the device thickness as the carrier diffusion length is limited by the low mobility. Herein, we improve the properties of the p-type layer through a two-step hybrid organic ligand treatment. By treating the p-type layer with two types of ligands, 3-mercaptopropionic acid (MPA) and EDT, the PbS QD surface was passivated by a combination of the two ligands, resulting in an overall improvement in open-circuit voltage, fill factor, and current density, leading to an improvement in the cell efficiency from 7.0 to 10.4% for the champion device. This achievement was a result of the improved QD passivation and a reduction in the interdot distance, improving charge transport through the p-type PbS quantum dot film.
  •  
2.
  • Zhao, Jun, et al. (författare)
  • Two-dimensional (2D) graphene nanosheets as advanced lubricant additives : A critical review and prospect
  • 2021
  • Ingår i: Materials Today Communications. - : Elsevier. - 2352-4928. ; 29
  • Tidskriftsartikel (refereegranskat)abstract
    • Graphene is a two-dimensional nanomaterial with a monolayer of atomic thickness. Due to its high specific surface area, weak interlayer interaction and good chemical stability, graphene has shown remarkable tribological properties as a lubricant additive. This review focuses on the research progress on graphene-based additives witnessed in recent years. Various synthesis methods of graphene nanomaterials have been displayed, and the review especially highlights the preparation processes of graphene using as a lubricant additive. The dispersion stability of graphene in lubricants is a key concern that has been presented. Besides physical and chemical modifications, a new dispersion method of structural regulation, which has obvious self-dispersed effect, is also discussed in detail. Furthermore, the lubrication mechanisms of graphene additives have been summarized, which will be highly beneficial to optimize the synthesis processes and to regulate the microstructures of graphene for achieving better lubrication. Finally, the challenges and outlook of the future studies on graphene additives are presented in the field of lubrication.
  •  
3.
  • Zhao, Jun, et al. (författare)
  • Using Green, Economical, Efficient Two-Dimensional (2D) Talc Nanosheets as Lubricant Additives under Harsh Conditions
  • 2022
  • Ingår i: Nanomaterials. - : MDPI. - 2079-4991. ; 12:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Two-dimensional (2D) nanomaterials have attracted much attention for lubrication enhancement of grease. It is difficult to disperse nanosheets in viscous grease and the lubrication performances of grease under harsh conditions urgently need to be improved. In this study, the 2D talc nanosheets are modified by a silane coupling agent with the assistance of high-energy ball milling, which can stably disperse in grease. The thickness and size of the talc nanosheet are about 20 nm and 2 µm. The silane coupling agent is successfully grafted on the surface of talc. Using the modified-talc nanosheet, the coefficient of friction and wear depth can be reduced by 40% and 66% under high temperature (150 °C) and high load (3.5 GPa), respectively. The enhancement of the lubrication and anti-wear performance is attributed to the boundary adsorbed tribofilm of talc achieving a repairing effect of the friction interfaces, the repairing effect of talc on the friction interfaces. This work provides green, economical guidance for developing natural lubricant additives and has great potential in sustainable lubrication.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy