SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Garde J J) srt2:(2020-2024)"

Sökning: WFRF:(Garde J J) > (2020-2024)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Garde, Baptiste, et al. (författare)
  • Fine-scale changes in speed and altitude suggest protean movements in homing pigeon flights
  • 2021
  • Ingår i: Royal Society Open Science. - : The Royal Society. - 2054-5703. ; 8:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The power curve provides a basis for predicting adjustments that animals make in flight speed, for example in relation to wind, distance, habitat foraging quality and objective. However, relatively few studies have examined how animals respond to the landscape below them, which could affect speed and power allocation through modifications in climb rate and perceived predation risk. We equipped homing pigeons (Columba livia) with high-frequency loggers to examine how flight speed, and hence effort, varies in relation to topography and land cover. Pigeons showed mixed evidence for an energy-saving strategy, as they minimized climb rates by starting their ascent ahead of hills, but selected rapid speeds in their ascents. Birds did not modify their speed substantially in relation to land cover, but used higher speeds during descending flight, highlighting the importance of considering the rate of change in altitude before estimating power use from speed. Finally, we document an unexpected variability in speed and altitude over fine scales; a source of substantial energetic inefficiency. We suggest this may be a form of protean behaviour adopted to reduce predation risk when flocking is not an option, and that such a strategy could be widespread.
  •  
3.
  • Hyde, William R., et al. (författare)
  • Microstructural and isotopic analysis of shocked monazite from the Hiawatha impact structure : development of porosity and its utility in dating impact craters
  • 2024
  • Ingår i: Contributions to Mineralogy and Petrology. - 0010-7999. ; 179:3
  • Tidskriftsartikel (refereegranskat)abstract
    • U–Pb geochronology of shocked monazite can be used to date hypervelocity impact events. Impact-induced recrystallisation and formation of mechanical twins in monazite have been shown to result in radiogenic Pb loss and thus constrain impact ages. However, little is known about the effect of porosity on the U–Pb system in shocked monazite. Here we investigate monazite in two impact melt rocks from the Hiawatha impact structure, Greenland by means of nano- and micrometre-scale techniques. Microstructural characterisation by scanning electron and transmission electron microscopy imaging and electron backscatter diffraction reveals shock recrystallisation, microtwins and the development of widespread micrometre- to nanometre-scale porosity. For the first time in shocked monazite, nanophases identified as cubic Pb, Pb3O4, and cerussite (PbCO3) were observed. We also find evidence for interaction with impact melt and fluids, with the formation of micrometre-scale melt-bearing channels, and the precipitation of the Pb-rich nanophases by dissolution–precipitation reactions involving pre-existing Pb-rich high-density clusters. To shed light on the response of monazite to shock metamorphism, high-spatial-resolution U–Pb dating by secondary ion mass spectrometry was completed. Recrystallised grains show the most advanced Pb loss, and together with porous grains yield concordia intercept ages within uncertainty of the previously established zircon U–Pb impact age attributed to the Hiawatha impact structure. Although porous grains alone yielded a less precise age, they are demonstrably useful in constraining impact ages. Observed relatively old apparent ages can be explained by significant retention of radiogenic lead in the form of widespread Pb nanophases. Lastly, we demonstrate that porous monazite is a valuable microtexture to search for when attempting to date poorly constrained impact structures, especially when shocked zircon or recrystallised monazite grains are not present.
  •  
4.
  • Kenny, Gavin G., et al. (författare)
  • A Late Paleocene age for Greenland’s Hiawatha impact structure
  • 2022
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 8:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The ~31-km-wide Hiawatha structure, located beneath Hiawatha Glacier in northwestern Greenland, has been proposed as an impact structure that may have formed after the Pleistocene inception of the Greenland Ice Sheet. To date the structure, we conducted 40Ar/39Ar analyses on glaciofluvial sand and U-Pb analyses on zircon separated from glaciofluvial pebbles of impact melt rock, all sampled immediately downstream of Hiawatha Glacier. Unshocked zircon in the impact melt rocks dates to ~1915 million years (Ma), consistent with felsic intrusions found in local bedrock. The 40Ar/39Ar data indicate Late Paleocene resetting and shocked zircon dates to 57.99 ± 0.54 Ma, which we interpret as the impact age. Consequently, the Hiawatha impact structure far predates Pleistocene glaciation and is unrelated to either the Paleocene-Eocene Thermal Maximum or flood basalt volcanism in east Greenland. However, it was contemporaneous with the Paleocene Carbon Isotope Maximum, although the impact’s exact paleoenvironmental and climatic significance awaits further investigation.
  •  
5.
  •  
6.
  • Massart, J, et al. (författare)
  • Endurance exercise training-responsive miR-19b-3p improves skeletal muscle glucose metabolism
  • 2021
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12:1, s. 5948-
  • Tidskriftsartikel (refereegranskat)abstract
    • Skeletal muscle is a highly adaptable tissue and remodels in response to exercise training. Using short RNA sequencing, we determine the miRNA profile of skeletal muscle from healthy male volunteers before and after a 14-day aerobic exercise training regime. Among the exercise training-responsive miRNAs identified, miR-19b-3p was selected for further validation. Overexpression of miR-19b-3p in human skeletal muscle cells increases insulin signaling, glucose uptake, and maximal oxygen consumption, recapitulating the adaptive response to aerobic exercise training. Overexpression of miR-19b-3p in mouse flexor digitorum brevis muscle enhances contraction-induced glucose uptake, indicating that miR-19b-3p exerts control on exercise training-induced adaptations in skeletal muscle. Potential targets of miR-19b-3p that are reduced after aerobic exercise training include KIF13A, MAPK6, RNF11, and VPS37A. Amongst these, RNF11 silencing potentiates glucose uptake in human skeletal muscle cells. Collectively, we identify miR-19b-3p as an aerobic exercise training-induced miRNA that regulates skeletal muscle glucose metabolism.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy