SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gardner James) srt2:(2010-2014)"

Sökning: WFRF:(Gardner James) > (2010-2014)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abel, I, et al. (författare)
  • Overview of the JET results with the ITER-like wall
  • 2013
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 53:10, s. 104002-
  • Tidskriftsartikel (refereegranskat)abstract
    • Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Z(eff) (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H-mode regimes with H-98,H-y2 close to 1 and beta(N) similar to 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal temperatures and confinement. Compared with the carbon wall, major disruptions with the new wall show a lower radiated power and a slower current quench. The higher heat loads on Be wall plasma-facing components due to lower radiation made the routine use of massive gas injection for disruption mitigation essential.
  •  
2.
  • Bateman, Alex, et al. (författare)
  • RNAcentral: A vision for an international database of RNA sequences.
  • 2011
  • Ingår i: RNA (New York, N.Y.). - : Cold Spring Harbor Laboratory. - 1469-9001 .- 1355-8382. ; 17:11, s. 1941-6
  • Tidskriftsartikel (refereegranskat)abstract
    • During the last decade there has been a great increase in the number of noncoding RNA genes identified, including new classes such as microRNAs and piRNAs. There is also a large growth in the amount of experimental characterization of these RNA components. Despite this growth in information, it is still difficult for researchers to access RNA data, because key data resources for noncoding RNAs have not yet been created. The most pressing omission is the lack of a comprehensive RNA sequence database, much like UniProt, which provides a comprehensive set of protein knowledge. In this article we propose the creation of a new open public resource that we term RNAcentral, which will contain a comprehensive collection of RNA sequences and fill an important gap in the provision of biomedical databases. We envision RNA researchers from all over the world joining a federated RNAcentral network, contributing specialized knowledge and databases. RNAcentral would centralize key data that are currently held across a variety of databases, allowing researchers instant access to a single, unified resource. This resource would facilitate the next generation of RNA research and help drive further discoveries, including those that improve food production and human and animal health. We encourage additional RNA database resources and research groups to join this effort. We aim to obtain international network funding to further this endeavor.
  •  
3.
  • Bhagavathiachari, Muthuraaman, et al. (författare)
  • A quasi-liquid polymer-based cobalt redox mediator electrolyte for dye-sensitized solar cells
  • 2013
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 15:40, s. 17419-17425
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, cobalt redox electrolyte mediators have emerged as a promising alternative to the commonly used iodide/triiodide redox shuttle in dye-sensitized solar cells (DSCs). Here, we report the successful use of a new quasi-liquid, polymer-based electrolyte containing the Co3+/Co2+ redox mediator in 3-methoxy propionitrile solvent in order to overcome the limitations of high cell resistance, low diffusion coefficient and rapid recombination losses. The performance of the solar cells containing the polymer based electrolytes increased by a factor of 1.2 with respect to an analogous electrolyte without the polymer. The performances of the fabricated DSCs have been investigated in detail by photovoltaic, transient electron measurements, EIS, Raman and UV-vis spectroscopy. This approach offers an effective way to make high-performance and long-lasting DSCs.
  •  
4.
  • Degerman Engfeldt, Johnny, 1982- (författare)
  • Predicting Electrochromic Smart Window Performance
  • 2012
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The building sector is one of the largest consumers of energy, where the cooling of buildings accounts for a large portion of the total energy consumption. Electrochromic (EC) smart windows have a great potential for increasing indoor comfort and saving large amounts of energy for buildings. An EC device can be viewed as a thin-film electrical battery whose charging state is manifested in optical absorption, i.e. the optical absorption increases with increased state-of-charge (SOC) and decreases with decreased state-of-charge. It is the EC technology's unique ability to control the absorption (transmittance) of solar energy and visible light in windows with small energy effort that can reduce buildings' cooling needs. Today, the EC technology is used to produce small windows and car rearview mirrors, and to reach the construction market it is crucial to be able to produce large area EC devices with satisfactory performance. A challenge with up-scaling is to design the EC device system with a rapid and uniform coloration (charging) and bleaching (discharging). In addition, up-scaling the EC technology is a large economic risk due to its expensive production equipment, thus making the choice of EC material and system extremely critical. Although this is a well-known issue, little work has been done to address and solve these problems. This thesis introduces a cost-efficient methodology, validated with experimental data, capable of predicting and optimizing EC device systems' performance in large area applications, such as EC smart windows. This methodology consists of an experimental set-up, experimental procedures and a twodimensional current distribution model. The experimental set-up, based on camera vision, is used in performing experimental procedures to develop and validate the model and methodology. The two-dimensional current distribution model takes secondary current distribution with charge transfer resistance, ohmic and time-dependent effects into account. Model simulations are done by numerically solving the model's differential equations using a finite element method. The methodology is validated with large area experiments. To show the advantage of using a well-functioning current distribution model as a design tool, some EC window size coloration and bleaching predictions are also included. These predictions show that the transparent conductor resistance greatly affects the performance of EC smart windows.
  •  
5.
  • Farnum, Byron H., et al. (författare)
  • Flash-Quench Technique Employed To Study the One-Electron Reduction of Triiodide in Acetonitrile : Evidence for a Diiodide Reaction Product
  • 2010
  • Ingår i: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 49:22, s. 10223-10225
  • Tidskriftsartikel (refereegranskat)abstract
    • The one-electron reduction of triiodide (I3?) by a reduced ruthenium polypyridyl compound was studied in an acetonitrile solution with the flash-quench technique. Reductive quenching of the metal-to-ligand charge-transfer excited state of [RuII(deeb)3]2+ by iodide generated the reduced ruthenium compound [RuII(deeb?)(deeb)2]+ and diiodide (I2??). The subsequent reaction of [RuII(deeb?)(deeb)2]+ with I3? indicated that I2?? was a product that appeared with a second-order rate constant of (5.1 ± 0.2) ? 109 M?1 s?1. After correction for diffusion and some assumptions, Marcus theory predicted a formal potential of ?0.58 V (vs SCE) for the one-electron reduction of I3?. The relevance of this reaction to solar energy conversion is discussed.
  •  
6.
  • Farnum, Byron H., et al. (författare)
  • Influence of ion pairing on the oxidation of iodide by MLCT excited states
  • 2011
  • Ingår i: Dalton Transactions. - : Royal Society of Chemistry. - 1477-9226 .- 1477-9234. ; 40:15, s. 3830-3838
  • Tidskriftsartikel (refereegranskat)abstract
    • The oxidation of iodide to diiodide, I2[radical dot]-, by the metal-to-ligand charge-transfer (MLCT) excited state of [Ru(deeb)3]2+, where deeb is 4,4[prime or minute]-(CO2CH2CH3)2-2,2[prime or minute]-bipyridine, was quantified in acetonitrile and dichloromethane solution at room temperature. The redox and excited state properties of [Ru(deeb)3]2+ were similar in the two solvents; however, the mechanisms for excited state quenching by iodide were found to differ significantly. In acetonitrile, reaction of [Ru(deeb)3]2+* and iodide was dynamic (lifetime quenching) with kinetics that followed the Stern-Volmer model (KD = 1.0 +/- 0.01 [times] 105 M-1, kq = 4.8 [times] 1010 M-1 s-1). Excited state reactivity was observed to be the result of reductive quenching that yielded the reduced ruthenium compound, [Ru(deeb-)(deeb)2]+, and the iodine atom, I[radical dot]. In dichloromethane, excited state quenching was primarily static (photoluminescence amplitude quenching) and [Ru(deeb-)(deeb)2]+ formed within 10 ns, consistent with the formation of ion pairs in the ground state that react rapidly upon visible light absorption. In both solvents the appearance of I2[radical dot]- could be time resolved. In acetonitrile, the rate constant for I2[radical dot]- growth, 2.2 +/- 0.2 [times] 1010 M-1 s-1, was found to be about a factor of two slower than the formation of [Ru(deeb-)(deeb)2]+, indicating it was a secondary photoproduct. The delayed appearance of I2[radical dot]- was attributed to the reaction of iodine atoms with iodide. In dichloromethane, the growth of I2[radical dot]-, 1.3 +/- 0.4 [times] 1010 M-1 s-1, was similar to that in acetonitrile, yet resulted from iodine atoms formed within the laser pulse. These results are discussed within the context of solar energy conversion by dye-sensitized solar cells and storage via chemical bond formation.
  •  
7.
  • Freys, Jonathan C., et al. (författare)
  • Ru-based donor-acceptor photosensitizer that retards charge recombination in a p-type dye-sensitized solar cell
  • 2012
  • Ingår i: Dalton Transactions. - : Royal Society of Chemistry (RSC). - 1477-9226 .- 1477-9234. ; 41:42, s. 13105-13111
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the synthesis and characterization of a donor-acceptor ruthenium polypyridyl complex as a photosensitizer for p-type dye-sensitized solar cells (DSSCs). The electrochemical, photophysical, and photovoltaic performance of two ruthenium-based photosensitizers were tested in NiO-based DSSCs; bis-(2,2′-bipyridine-4,4′-dicarboxylic acid) 2N-(1,10-phenanthroline)-4-nitronaphthalene-1,8-dicarboximide ruthenium(ii), ([Ru(dcb) 2(NMI-phen)](PF 6) 2) and tris-(2,2′-bipyridine-4,4′-dicarboxylic acid) 3 ruthenium(ii), [(Ru(dcb) 3)Cl 2]. The presence of an electron-accepting group, 4-nitronaphthalene-1,8-dicarboximide (NMI), attached to the phenanthroline of [Ru(dcb) 2(NMI-phen)] 2+ resulted in long-lived charge separation between reduced [Ru(dcb) 2(NMI-phen)] 2+ and NiO valence band holes; 10-50 μs. In the reduced state for [Ru(dcb) 2(NMI-phen)] 2+, the electron localized on the distal NMI group. In tests with I 3 -/I - and Co(4,4′-di-tert-butyl-bipyridine) 3 2+/3+ electrolytes, [Ru(dcb) 2(NMI-phen)] 2+ outperformed [Ru(dcb) 3] 2+ in solar cell efficiency in devices. A record APCE (25%) was achieved for a ruthenium photosensitizer in a p-type DSSC. Insights on photosensitizer regeneration kinetics are included.
  •  
8.
  • Gardner, James M., 1982-, et al. (författare)
  • Electrodeposition of Nanometer-Sized Ferric Oxide Materials in Colloidal Templates for Conversion of Light to Chemical Energy
  • 2011
  • Ingår i: Journal of Nanomaterials. - : Hindawi Publishing Corporation. - 1687-4110 .- 1687-4129. ; 2011, s. 1-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Colloidal crystal templates were prepared by gravitational sedimentation of 0.5 micron polystyrene particles onto fluorine-doped tin oxide (FTO) electrodes. Scanning electron microscopy (SEM) shows that the particles were close packed and examination of successive layers indicated a predominantly face-centered-cubic (fcc) crystal structure where the direction normal to the substrate surface corresponds to the (111) direction. Oxidation of aqueous ferrous solutions resulted in the electrodeposition of ferric oxide into the templates. Removal of the colloidal templates yielded ordered macroporous electrodes (OMEs) that were the inverse structure of the colloidal templates. Current integration during electrodeposition and cross-sectional SEM images revealed that the OMEs were about 2 mu m thick. Comparative X-ray diffraction and infrared studies of the OMEs did not match a known phase of ferric oxide but suggested a mixture of goethite and hematite. The spectroscopic properties of the OMEs were insensitive to heat treatments at 300. C. The OMEs were utilized for photoassisted electrochemical oxidation. A sustained photocurrent was observed from visible light in aqueous photoelectrochemical cells. Analysis of photocurrent action spectra revealed an indirect band gap of 1.85 eV. Addition of formate to the aqueous electrolytes resulted in an approximate doubling of the photocurrent.
  •  
9.
  • Gardner, James M, 1982-, et al. (författare)
  • Light-Driven Electron Transfer between a Photosensitizer and a Proton-Reducing Catalyst Co-adsorbed to NiO
  • 2012
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 134:47, s. 19322-19325
  • Tidskriftsartikel (refereegranskat)abstract
    • While intermolecular hole-hopping along the surface of semiconductors is known, there are no previous examples of electron-hopping between molecules on a surface. Herein, we present the first evidence of electron transfer from the photoreduced sensitizer Coumarin-343 (C343) to complex 1, both bound on the surface of NiO. In solution, 1 has been shown to be a mononuclear Fe-based proton-reducing catalyst. The reduction of 1 is reversible and occurs within 50 ns after excitation of C343. Interfacial recombination between the reduced 1(-) and NiO hole occurs on a 100 µs time scale by non-exponential kinetics. The observed process is the first essential step in the photosensitized generation of H2 from a molecular catalyst in the absence of a sacrificial donor reagent.
  •  
10.
  • Jakobsson, Martin, et al. (författare)
  • The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0
  • 2012
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 39
  • Tidskriftsartikel (refereegranskat)abstract
    • The International Bathymetric Chart of the Arctic Ocean (IBCAO) released its first gridded bathymetric compilation in 1999. The IBCAO bathymetric portrayals have since supported a wide range of Arctic science activities, for example, by providing constraint for ocean circulation models and the means to define and formulate hypotheses about the geologic origin of Arctic undersea features. IBCAO Version 3.0 represents the largest improvement since 1999 taking advantage of new data sets collected by the circum-Arctic nations, opportunistic data collected from fishing vessels, data acquired from US Navy submarines and from research ships of various nations. Built using an improved gridding algorithm, this new grid is on a 500 meter spacing, revealing much greater details of the Arctic seafloor than IBCAO Version 1.0 (2.5 km) and Version 2.0 (2.0 km). The area covered by multibeam surveys has increased from similar to 6% in Version 2.0 to similar to 11% in Version 3.0. Citation: Jakobsson, M., et al. (2012), The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0, Geophys. Res. Lett., 39, L12609, doi:10.1029/2012GL052219.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy