SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Garousi Javad) srt2:(2015)"

Sökning: WFRF:(Garousi Javad) > (2015)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Garousi, Javad, et al. (författare)
  • ADAPT, a Novel Scaffold Protein-Based Probe for Radionuclide Imaging of Molecular Targets That Are Expressed in Disseminated Cancers
  • 2015
  • Ingår i: Cancer Research. - : American Association for Cancer Research Inc.. - 0008-5472 .- 1538-7445. ; 75:20, s. 4364-4371
  • Tidskriftsartikel (refereegranskat)abstract
    • Small engineered scaffold proteins have attracted attention as probes for radionuclide-based molecular imaging. One class of these imaging probes, termed ABD-Derived Affinity Proteins (ADAPT), has been created using the albumin-binding domain (ABD) of streptococcal protein G as a stable protein scaffold. In this study, we report the development of a clinical lead probe termed ADAPT6 that binds HER2, an oncoprotein overexpressed in many breast cancers that serves as a theranostic biomarker for several approved targeting therapies. Surface-exposed amino acids of ABD were randomized to create a combinatorial library enabling selection of high-affinity binders to various proteins. Furthermore, ABD was engineered to enable rapid purification, to eradicate its binding to albumin, and to enable rapid blood clearance. Incorporation of a unique cysteine allowed site-specific conjugation to a maleimido derivative of a DOTA chelator, enabling radionuclide labeling, In-111 for SPECT imaging and Ga-68 for PET imaging. Pharmacologic studies in mice demonstrated that the fully engineered molecule In-111/Ga-68-DOTA(HE) 3-ADAPT6 was specifically bound and taken up by HER2-expressing tumors, with a high tumor-to-normal tissue ratio in xenograft models of human cancer. Unbound tracer underwent rapid renal clearance followed by high renal reabsorption. HER2-expressing xenografts were visualized by gamma-camera or PET at 1 hour after infusion. PET experiments demonstrated feasibility for discrimination of xenografts with high or low HER2 expression. Our results offer a preclinical proof of concept for the use of ADAPT probes for noninvasive in vivo imaging.
  •  
2.
  •  
3.
  • Honarvar, Hadis, et al. (författare)
  • Imaging of CAIX-expressing xenografts in vivo using 99mTc-HEHEHE-ZCAIX : 1 Affibody molecule
  • 2015
  • Ingår i: International Journal of Oncology. - : Spandidos Publications. - 1019-6439 .- 1791-2423. ; 46:2, s. 513-20
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbonic anhydrase IX (CAIX) is a transmembrane enzyme involved in regulation of tissue pH balance. In cancer, CAIX expression is associated with tumor hypoxia. CAIX is also overexpressed in renal cell carcinoma and is a molecular target for the therapeutic antibody cG250 (girentuximab). Radionuclide imaging of CAIX expression might be used for identification of patients who may benefit from cG250 therapy and from treatment strategies for hypoxic tumors. Affibody molecules are small (7 kDa) scaffold proteins having a high potential as probes for radionuclide molecular imaging. The aim of the present study was to evaluate feasibility of in vivo imaging of CAIX-expression using radiolabeled Affibody molecules. A histidine-glutamate-histidine-glutamate-histidine-glutamate (HE)3-tag-containing CAIX-binding Affibody molecule (HE)3-ZCAIX:1 was labeled with [99mTc(CO)3]+. Its binding properties were evaluated in vitro using CAIX-expressing SK-RC-52 renal carcinoma cells. 99mTc-(HE)3-ZCAIX:1 was evaluated in NMRI nu/nu mice bearing SK-RC-52 xenografts. The in vivo specificity test confirmed CAIX-mediated tumor targeting. 99mTc-(HE)3-ZCAIX:1 cleared rapidly from blood and normal tissues except for kidneys. At optimal time-point (4 h p.i.), the tumor uptake was 9.7±0.7% ID/g, and tumor-to-blood ratio was 53±10. Experimental imaging of CAIX-expressing SK-RC-52 xenografts at 4 h p.i. provided high contrast images. The use of radioiodine label for ZCAIX:1 enabled the reduction of renal uptake, but resulted in significantly lower tumor uptake and tumor-to-blood ratio. Results of the present study suggest that radiolabeled Affibody molecules are promising probes for imaging of CAIX-expression in vivo.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy