SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gautam R.) srt2:(2015-2019)"

Sökning: WFRF:(Gautam R.) > (2015-2019)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kraus, Stefan, et al. (författare)
  • Planet Formation Imager (PFI) : Science vision and key requirements
  • 2016
  • Ingår i: Optical and Infrared Interferometry and Imaging V. - : SPIE. - 9781510601932 ; 9907
  • Konferensbidrag (refereegranskat)abstract
    • The Planet Formation Imager (PFI) project aims to provide a strong scientific vision for ground-based optical astronomy beyond the upcoming generation of Extremely Large Telescopes. We make the case that a breakthrough in angular resolution imaging capabilities is required in order to unravel the processes involved in planet formation. PFI will be optimised to provide a complete census of the protoplanet population at all stellocentric radii and over the age range from 0.1 to ∼100 Myr. Within this age period, planetary systems undergo dramatic changes and the final architecture of planetary systems is determined. Our goal is to study the planetary birth on the natural spatial scale where the material is assembled, which is the "Hill Sphere" of the forming planet, and to characterise the protoplanetary cores by measuring their masses and physical properties. Our science working group has investigated the observational characteristics of these young protoplanets as well as the migration mechanisms that might alter the system architecture. We simulated the imprints that the planets leave in the disk and study how PFI could revolutionise areas ranging from exoplanet to extragalactic science. In this contribution we outline the key science drivers of PFI and discuss the requirements that will guide the technology choices, the site selection, and potential science/technology tradeoffs.
  •  
2.
  • Tinetti, G., et al. (författare)
  • A chemical survey of exoplanets with ARIEL
  • 2018
  • Ingår i: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 46:1, s. 135-209
  • Tidskriftsartikel (refereegranskat)abstract
    • Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.
  •  
3.
  •  
4.
  • Roberts, Lewis C., et al. (författare)
  • KNOW THE STAR, KNOW THE PLANET. V. CHARACTERIZATION OF THE STELLAR COMPANION TO THE EXOPLANET HOST STAR HD 177830
  • 2015
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 150:4
  • Tidskriftsartikel (refereegranskat)abstract
    • HD 177830 is an evolved K0IV star with two known exoplanets. In addition to the planetary companions it has a late-type stellar companion discovered with adaptive optics imagery. We observed the binary star system with the PHARO near-IR camera and the Project 1640 coronagraph. Using the Project 1640 coronagraph and integral field spectrograph we extracted a spectrum of the stellar companion. This allowed us to determine that the spectral type of the stellar companion is a M4 +/- 1 V. We used both instruments to measure the astrometry of the binary system. Combining these data with published data, we determined that the binary star has a likely period of approximately 800 years with a semimajor axis of 100-200 AU. This implies that the stellar companion has had little or no impact on the dynamics of the exoplanets. The astrometry of the system should continue to be monitored, but due to the slow nature of the system, observations can be made once every 5-10 years.
  •  
5.
  • Crepp, Justin R., et al. (författare)
  • DIRECT SPECTRUM OF THE BENCHMARK T DWARF HD 19467 B
  • 2015
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 798:2
  • Tidskriftsartikel (refereegranskat)abstract
    • HD 19467 B is presently the only directly imaged T dwarf companion known to induce a measurable Doppler acceleration around a solar-type star. We present spectroscopy measurements of this important benchmark object taken with the Project 1640 integral field unit at Palomar Observatory. Our high-contrast R approximate to 30 observations obtained simultaneously across the JH bands confirm the cold nature of the companion as reported from the discovery article and determine its spectral type for the first time. Fitting the measured spectral energy distribution to SpeX/IRTF T dwarf standards and synthetic spectra from BT-Settl atmospheric models, we find that HD 19467 B is a T5.5 +/- 1 dwarf with effective temperature T-eff = 978(-43)(+20) K. Our observations reveal significant methane absorption affirming its substellar nature. HD 19467 B shows promise to become the first T dwarf that simultaneously reveals its mass, age, and metallicity independent from the spectrum of light that it emits.
  •  
6.
  • Jiang, Peng, et al. (författare)
  • Changes of storm properties in the United States : Observations and multimodel ensemble projections
  • 2016
  • Ingår i: Global and Planetary Change. - : Elsevier BV. - 0921-8181. ; 142, s. 41-52
  • Tidskriftsartikel (refereegranskat)abstract
    • Changes in climate are likely to induce changes in precipitation characteristics including intensity, frequency, duration and patterns of events. In this paper, we evaluate the performance of multiple regional climate models (RCMs) in the North American Regional Climate Change Assessment Program (NARCCAP) to simulate storm properties including storm duration, inter-storm period, storm intensity, and within-storm patterns at eight locations in the continental US. We also investigate the future projections of them based on precipitation from NARCCAP historic runs and future runs. Results illustrate that NARCCAP RCMs are consistent with observed precipitation in the seasonal variation of storm duration and inter-storm period, but fail to simulate the magnitude. The ability to simulate the seasonal trend of average storm intensity varies among locations. Within-storm patterns from RCMs exhibit greater variability than from observed records. Comparisons between RCM-historic simulations and RCM projections indicate that there is a large variation in the future changes in storm properties. However, multi-model ensembles of the storm properties suggest that most regions of the United States will experience future changes in storm properties that includes shorter storm duration, longer inter-storm period, and larger average storm intensity.
  •  
7.
  •  
8.
  • Roberts, Lewis C., et al. (författare)
  • CHARACTERIZATION OF THE COMPANION mu HER
  • 2016
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 151:6
  • Tidskriftsartikel (refereegranskat)abstract
    • mu Her is a nearby quadruple system with a G-subgiant primary and several low-mass companions arranged in a 2+2 architecture. While the BC components have been well characterized, the Ab component has been detected astrometrically and with direct imaging but there has been some confusion over its nature, in particular, whether the companion is stellar or substellar. Using near-infrared spectroscopy, we are able to estimate the spectral type of the companion as an M4 +/- 1V star. In addition, we have measured the astrometry of the system for over a decade. We combined the astrometry with archival radial velocity measurements to compute an orbit of the system. From the combined orbit, we are able to compute the mass sum of the system. Using the estimated mass of the primary, we estimate the mass of the secondary as 0.32 MG, which agrees with the estimated spectral type. Our computed orbit is preliminary due to the incomplete orbital phase coverage, but it should be sufficient to predict ephemerides over the next decade.
  •  
9.
  •  
10.
  • Tiwari, Suresh, et al. (författare)
  • Assessment of PM2.5 and PM10 over Guwahati in Brahmaputra River Valley : Temporal evolution, source apportionment and meteorological dependence
  • 2017
  • Ingår i: Atmospheric Pollution Research. - : Elsevier BV. - 1309-1042. ; 8:1, s. 13-28
  • Tidskriftsartikel (refereegranskat)abstract
    • Temporal evolution, source apportionment and transport pathways of particulate matter (PM2.5 and PM10) are analysed over Guwahati, located in the Brahmaputra River Valley (BRV), as a function of meteorological dynamics. During the study period (July 2013-June 2014), the mean PM2.5 and PM10 mass concentrations were found to be 52 +/- 37 and 91 +/- 60 mu g m (-3), respectively, both exhibiting higher concentrations during DecembereMarch and very low during summer. The annual mean ratio of PM2.5/ PM10 was 0.57 +/- 0.11, varying from 0.24 to 0.86, suggesting dominance of anthropogenic vs natural emissions during winter and spring, respectively. Diurnal variation reveals higher PM concentrations during morning (similar to 9: 00 local time (LT)) and evening (similar to 23: 00 LT) and lowest around similar to 14: 00 to 17: 00 LT due to influence of dilution processes and higher mixing-layer height over the region. Bivariate plots and Conditional Bivariate Probability Function (CBPF) analysis showed that the highest PM2.5 and PM10 concentrations are mostly associated with weak northwestern winds (< 1.5 ms (- 1)) in all seasons except spring, when the highest PM10 are for southwestern winds above 4-6 ms(- 1), indicating dust transport from SW Asia. Analysis reveals that the local emissions, transported aerosols, along with seasonallychanged air masses, meteorology and boundary-layer dynamics control the concentrations, evolution and fractions of PM over BRV. The turbid air masses transported over Guwahati mostly from western and southwestern directions contribute to higher PM concentrations, either carrying anthropogenic pollution from Indo-Gangetic Plains or locally and LRT dust from BRV and western India, respectively.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy