SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gennaro F) srt2:(2020)"

Sökning: WFRF:(Gennaro F) > (2020)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Gennaro, F, et al. (författare)
  • Corticospinal Control of Human Locomotion as a New Determinant of Age-Related Sarcopenia: An Exploratory Study
  • 2020
  • Ingår i: Journal of clinical medicine. - : MDPI AG. - 2077-0383. ; 9:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Sarcopenia is a muscle disease listed within the ICD-10 classification. Several operational definitions have been created for sarcopenia screening; however, an international consensus is lacking. The Centers for Disease Control and Prevention have recently recognized that sarcopenia detection requires improved diagnosis and screening measures. Mounting evidence hints towards changes in the corticospinal communication system where corticomuscular coherence (CMC) reflects an effective mechanism of corticospinal interaction. CMC can be assessed during locomotion by means of simultaneously measuring Electroencephalography (EEG) and Electromyography (EMG). The aim of this study was to perform sarcopenia screening in community-dwelling older adults and explore the possibility of using CMC assessed during gait to discriminate between sarcopenic and non-sarcopenic older adults. Receiver Operating Characteristic (ROC) curves showed high sensitivity, precision and accuracy of CMC assessed from EEG Cz sensor and EMG sensors located over Musculus Vastus Medialis [Cz-VM; AUC (95.0%CI): 0.98 (0.92–1.04), sensitivity: 1.00, 1-specificity: 0.89, p < 0.001] and with Musculus Biceps Femoris [Cz-BF; AUC (95.0%CI): 0.86 (0.68–1.03), sensitivity: 1.00, 1-specificity: 0.70, p < 0.001]. These muscles showed significant differences with large magnitude of effect between sarcopenic and non-sarcopenic older adults [Hedge’s g (95.0%CI): 2.2 (1.3–3.1), p = 0.005 and Hedge’s g (95.0%CI): 1.5 (0.7–2.2), p = 0.010; respectively]. The novelty of this exploratory investigation is the hint toward a novel possible determinant of age-related sarcopenia, derived from corticospinal control of locomotion and shown by the observed large differences in CMC when sarcopenic and non-sarcopenic older adults are compared. This, in turn, might represent in future a potential treatment target to counteract sarcopenia as well as a parameter to monitor the progression of the disease and/or the potential recovery following other treatment interventions.
  •  
3.
  • Robberto, Massimo, et al. (författare)
  • HST Survey of the Orion Nebula Cluster in the H2O 1.4 μm Absorption Band. I. A Census of Substellar and Planetary-mass Objects
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 896:1
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to obtain a complete census of the stellar and substellar population, down to a few MJup in the ∼1 Myr old Orion Nebula Cluster, we used the infrared channel of the Wide Field Camera 3 of the Hubble Space Telescope with the F139M and F130N filters. These bandpasses correspond to the 1.4 μm H2O absorption feature and an adjacent line-free continuum region. Out of 4504 detected sources, 3352 (about 75%) appear fainter than m 130 = 14 (Vega mag) in the F130N filter, a brightness corresponding to the hydrogen-burning limit mass (M ≃ 0.072 M⊙) at ∼1 Myr. Of these, however, only 742 sources have a negative F130M-F139N color index, indicative of the presence of H2O vapor in absorption, and can therefore be classified as bona fide M and L dwarfs, with effective temperatures T ≲ 2850 K at an assumed 1 Myr cluster age. On our color-magnitude diagram (CMD), this population of sources with H2O absorption appears clearly distinct from the larger background population of highly reddened stars and galaxies with positive F130M-F139N color index and can be traced down to the sensitivity limit of our survey, m 130 ≃ 21.5, corresponding to a 1 Myr old ≃3 MJup planetary-mass object under about 2 mag of visual extinction. Theoretical models of the BT-Settl family predicting substellar isochrones of 1, 2, and 3 Myr down to ∼1 MJup fail to reproduce the observed H2O color index at M ≲ 20 MJup. We perform a Bayesian analysis to determine extinction, mass, and effective temperature of each substellar member of our sample, together with its membership probability.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy