SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gent A.) srt2:(2020-2024)"

Sökning: WFRF:(Gent A.) > (2020-2024)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Algaba, Juan-Carlos, et al. (författare)
  • Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign
  • 2021
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 911:1
  • Forskningsöversikt (refereegranskat)abstract
    • In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass ∼6.5 × 109 M o˙. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87's spectrum. We can exclude that the simultaneous γ-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the γ-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded.
  •  
2.
  • Abdalla, H., et al. (författare)
  • Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagation
  • 2021
  • Ingår i: Journal of Cosmology and Astroparticle Physics. - : Institute of Physics Publishing (IOPP). - 1475-7516. ; :2
  • Tidskriftsartikel (refereegranskat)abstract
    • The Cherenkov Telescope Array (CTA), the new-generation ground-based observatory for gamma-ray astronomy, provides unique capabilities to address significant open questions in astrophysics, cosmology, and fundamental physics. We study some of the salient areas of gamma-ray cosmology that can be explored as part of the Key Science Projects of CTA, through simulated observations of active galactic nuclei (AGN) and of their relativistic jets. Observations of AGN with CTA will enable a measurement of gamma-ray absorption on the extragalactic background light with a statistical uncertainty below 15% up to a redshift z = 2 and to constrain or detect gamma-ray halos up to intergalactic-magnetic-field strengths of at least 0.3 pG. Extragalactic observations with CTA also show promising potential to probe physics beyond the Standard Model. The best limits on Lorentz invariance violation from gamma-ray astronomy will be improved by a factor of at least two to three. CTA will also probe the parameter space in which axion-like particles could constitute a significant fraction, if not all, of dark matter. We conclude on the synergies between CTA and other upcoming facilities that will foster the growth of gamma-ray cosmology.
  •  
3.
  • Abe, H., et al. (författare)
  • Gamma-ray observations of MAXI J1820+070 during the 2018 outburst
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 517:4, s. 4736-4751
  • Tidskriftsartikel (refereegranskat)abstract
    • MAXIJ1820+070 is a low-mass X-ray binary with a black hole (BH) as a compact object. This binary underwent an exceptionally bright X-ray outburst from 2018 March to October, showing evidence of a non-thermal particle population through its radio emission during this whole period. The combined results of 59.5 h of observations of the MAXI J1820+070 outburst with the H.E.S.S., MAGIC and VERITAS experiments at energies above 200 GeV are presented, together with Fermi-LAT data between 0.1 and 500 GeV, and multiwavelength observations from radio to X-rays. Gamma-ray emission is not detected from MAXI J1820+070, but the obtained upper limits and the multiwavelength data allow us to put meaningful constraints on the source properties under reasonable assumptions regarding the non-thermal particle population and the jet synchrotron spectrum. In particular, it is possible to show that, if a high-energy (HE) gamma-ray emitting region is present during the hard state of the source, its predicted flux should be at most a factor of 20 below the obtained Fermi-LAT upper limits, and closer to them for magnetic fields significantly below equipartition. During the state transitions, under the plausible assumption that electrons are accelerated up to similar to 500 GeV, the multiwavelength data and the gamma-ray upper limits lead consistently to the conclusion that a potential HE and very-HE gamma-ray emitting region should be located at a distance from the BH ranging between 10(11) and 10(13) cm. Similar outbursts from low-mass X-ray binaries might be detectable in the near future with upcoming instruments such as CTA.
  •  
4.
  • Adams, C. B., et al. (författare)
  • Observation of the Gamma-Ray Binary HESS J0632+057 with the HESS, MAGIC, and VERITAS Telescopes
  • 2021
  • Ingår i: Astrophysical Journal. - : Institute of Physics Publishing (IOPP). - 0004-637X .- 1538-4357. ; 923:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The results of gamma-ray observations of the binary system HESS J0632 + 057 collected during 450 hr over 15 yr, between 2004 and 2019, are presented. Data taken with the atmospheric Cherenkov telescopes H.E.S.S., MAGIC, and VERITAS at energies above 350 GeV were used together with observations at X-ray energies obtained with Swift-XRT, Chandra, XMM-Newton, NuSTAR, and Suzaku. Some of these observations were accompanied by measurements of the H alpha emission line. A significant detection of the modulation of the very high-energy gamma-ray fluxes with a period of 316.7 +/- 4.4 days is reported, consistent with the period of 317.3 +/- 0.7 days obtained with a refined analysis of X-ray data. The analysis of data from four orbital cycles with dense observational coverage reveals short-timescale variability, with flux-decay timescales of less than 20 days at very high energies. Flux variations observed over a timescale of several years indicate orbit-to-orbit variability. The analysis confirms the previously reported correlation of X-ray and gamma-ray emission from the system at very high significance, but cannot find any correlation of optical H alpha parameters with fluxes at X-ray or gamma-ray energies in simultaneous observations. The key finding is that the emission of HESS J0632 + 057 in the X-ray and gamma-ray energy bands is highly variable on different timescales. The ratio of gamma-ray to X-ray flux shows the equality or even dominance of the gamma-ray energy range. This wealth of new data is interpreted taking into account the insufficient knowledge of the ephemeris of the system, and discussed in the context of results reported on other gamma-ray binary systems.
  •  
5.
  • Obers, Niels A., et al. (författare)
  • Quantum gravity phenomenology at the dawn of the multi-messenger era—A review
  • 2022
  • Ingår i: Progress in Particle and Nuclear Physics. - : Elsevier BV. - 0146-6410 .- 1873-2224. ; 125
  • Forskningsöversikt (refereegranskat)abstract
    • The exploration of the universe has recently entered a new era thanks to the multi-messenger paradigm, characterized by a continuous increase in the quantity and quality of experimental data that is obtained by the detection of the various cosmic messengers (photons, neutrinos, cosmic rays and gravitational waves) from numerous origins. They give us information about their sources in the universe and the properties of the intergalactic medium. Moreover, multi-messenger astronomy opens up the possibility to search for phenomenological signatures of quantum gravity. On the one hand, the most energetic events allow us to test our physical theories at energy regimes which are not directly accessible in accelerators; on the other hand, tiny effects in the propagation of very high energy particles could be amplified by cosmological distances. After decades of merely theoretical investigations, the possibility of obtaining phenomenological indications of Planck-scale effects is a revolutionary step in the quest for a quantum theory of gravity, but it requires cooperation between different communities of physicists (both theoretical and experimental). This review, prepared within the COST Action CA18108 “Quantum gravity phenomenology in the multi-messenger approach”, is aimed at promoting this cooperation by giving a state-of-the art account of the interdisciplinary expertise that is needed in the effective search of quantum gravity footprints in the production, propagation and detection of cosmic messengers.
  •  
6.
  • Brandenburg, Axel, et al. (författare)
  • Introduction
  • 2020
  • Ingår i: Geophysical and Astrophysical Fluid Dynamics. - : Taylor & Francis. - 0309-1929 .- 1029-0419. ; 114:1-2, s. 1-7
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
7.
  • Kirchschlager, Florian, et al. (författare)
  • Supernova dust destruction in the magnetized turbulent ISM
  • 2024
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Dust in the interstellar medium (ISM) is critical to the absorption and intensity of emission profiles used widely in astronomical observations, and necessary for star and planet formation. Supernovae (SNe) both produce and destroy ISM dust. In particular the destruction rate is difficult to assess. Theory and prior simulations of dust processing by SNe in a uniform ISM predict quite high rates of dust destruction, potentially higher than the supernova dust production rate in some cases. Here we show simulations of supernova-induced dust processing with realistic ISM dynamics including magnetic field effects and demonstrate how ISM inhomogeneity and magnetic fields inhibit dust destruction. Compared to the non-magnetic homogeneous case, the dust mass destroyed within 1 Myr per SNe is reduced by more than a factor of two, which can have a great impact on the ISM dust budget.
  •  
8.
  • Kirchschlager, Florian, et al. (författare)
  • Supernova induced processing of interstellar dust : impact of interstellar medium gas density and gas turbulence
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 509:3, s. 3218-3234
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantifying the efficiency of dust destruction in the interstellar medium (ISM) due to supernovae (SNe) is crucial for the understanding of galactic dust evolution. We present 3D hydrodynamic simulations of an SN blast wave propagating through the ISM. The interaction between the forward shock of the remnant and the surrounding ISM leads to destruction of ISM dust by the shock-heated gas. We consider the dust processing due to ion sputtering, accretion of atoms/molecules, and grain-grain collisions. Using 2D slices from the simulation time series, we apply post-processing calculations using the PAPERBOATS code. We find that efficiency of dust destruction depends strongly on the rate of grain shattering due to grain-grain collisions. The effective dust destruction is similar to previous theoretical estimates when grain-grain collisions are omitted, but with grain shattering included, the net destruction efficiency is roughly one order of magnitude higher. This result indicates that the dust-destruction rate in the ISM may have been severely underestimated in previous work, which only exacerbates the dust-budget crises seen in galaxies at high redshifts.
  •  
9.
  • Käpylä, Petri, et al. (författare)
  • Sensitivity to luminosity, centrifugal force, and boundary conditions in spherical shell convection
  • 2020
  • Ingår i: Geophysical and Astrophysical Fluid Dynamics. - : Taylor & Francis. - 0309-1929 .- 1029-0419. ; 114:1-2, s. 8-34
  • Tidskriftsartikel (refereegranskat)abstract
    • We test the sensitivity of hydrodynamic and magnetohydrodynamic turbulent convection simulations with respect to Mach number, thermal and magnetic boundary conditions, and the centrifugal force. We find that varying the luminosity, which also controls the Mach number, has only a minor effect on the large-scale dynamics. A similar conclusion can also be drawn from the comparison of two formulations of the lower magnetic boundary condition with either vanishing electric field or current density. The centrifugal force has an effect on the solutions, but only if its magnitude with respect to acceleration due to gravity is by two orders of magnitude greater than in the Sun. Finally, we find that the parameterisation of the photospheric physics, either by an explicit cooling term or enhanced radiative diffusion, is more important than the thermal boundary condition. In particular, runs with cooling tend to lead to more anisotropic convection and stronger deviations from the Taylor-Proudman state. In summary, the fully compressible approach taken here with the Pencil Code is found to be valid, while still allowing the disparate timescales to be taken into account.
  •  
10.
  • Qazi, Yasin, et al. (författare)
  • Non-linear magnetic buoyancy instability and turbulent dynamo
  • 2024
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 527:3, s. 7994-8005
  • Tidskriftsartikel (refereegranskat)abstract
    • Stratified discs with strong horizontal magnetic fields, are susceptible to magnetic buoyancy instability (MBI). Modifying the magnetic field and gas distributions, this can play an important role in galactic evolution. The MBI and the Parker instability, in which MBI is exacerbated by cosmic rays, are often studied using an imposed magnetic field. However, in galaxies and accretion discs, the magnetic field is continuously replenished by a large-scale dynamo action. Using non-ideal MHD equations, we model a section of the galactic disc (we neglect rotation and cosmic rays considered elsewhere), in which the large-scale field is generated by an imposed α-effect of variable intensity to explore the interplay between dynamo instability and MBI. The system evolves through three distinct phases: the linear (kinematic) dynamo stage, the onset of linear MBI when the magnetic field becomes sufficiently strong and the non-linear, statistically steady state. Non-linear effects associated with the MBI introduce oscillations which do not occur when the field is produced by the dynamo alone. The MBI initially accelerates the magnetic field amplification but the growth is quenched by the vertical motions produced by MBI. We construct a 1D model, which replicates all significant features of 3D simulations to confirm that magnetic buoyancy alone can quench the dynamo and is responsible for the magnetic field oscillations. Unlike similar results obtained with an imposed magnetic field, the non-linear interactions do not reduce the gas scale height, so the consequences of the magnetic buoyancy depend on how the magnetic field is maintained.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy