SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gharibi Arash) srt2:(2006)"

Sökning: WFRF:(Gharibi Arash) > (2006)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dahl, Andreas, et al. (författare)
  • Traffic-generated emissions of ultrafine particles from pavement-tire interface
  • 2006
  • Ingår i: Atmospheric Environment. - : Elsevier. - 1352-2310 .- 1873-2844. ; 40:7, s. 1314-1323
  • Tidskriftsartikel (refereegranskat)abstract
    • In a road simulator study, a significant source of sub-micrometer fine particles produced by the road-tire interface was observed. Since the particle size distribution and source strength is dependent on the type of tire used, it is likely that these particles largely originate from the tires, and not the road pavement. The particles consisted most likely of mineral oils from the softening filler and fragments of the carbon-reinforcing filler material (soot agglomerates). This identification was based on transmission electron microscopy studies of collected ultrafine wear particles and on-line thermal treatment using a thermodesorber. The mean particle number diameters were between 15-50 nm, similar to those found in light duty vehicle (LDV) tail-pipe exhaust. A simple box model approach was used to estimate emission factors in the size interval 15-700 nm. The emission factors increased with increasing vehicle speed, and varied between 3.7 x 10(11) and 3.2 x 10(12) particles vehicle(-1) km(-1) at speeds of 50 and 70 km h(-1). This corresponds to between 0.1-1% of tail-pipe emissions in real-world emission studies at similar speeds from a fleet of LDV with 95% gasoline and 5% diesel-fueled cars. The emission factors for particles originating from the road-tire interface were, however, similar in magnitude to particle number emission factors from liquefied petroleum gas-powered vehicles derived in test bench studies in Australia 2005. Thus the road-tire interface may be a significant contributor to particle emissions from ultraclean vehicles. (c) 2005 Elsevier Ltd. All rights reserved.
  •  
2.
  • Gharibi, Arash (författare)
  • Studies of aerosol particle formation from various sources using ion and electron beam analytical techniques.
  • 2006
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The thesis presents the results of studies of aerosol particle formation using ion and electron beam analytical techniques. The sources of aerosol particle formation studied are the following: 1. production of primary aerosol particles in the high Arctic region during summers 2. emission of ultrafine aerosol particles from wear on the road-tire interface 3. emission of aerosol particles from district heating units operating on three commonly-used biofuels. A source of primary and nearly hydrophobic aerosol particles within the Arctic pack ice region during summers with a composition similar to that of average crustal rock was identified. Wear on the road-tire interface was found to generate numerous ultrafine aerosol particles of varying morphology. The particle number emission factors per vehicle and kilometer driven are similar in magnitude to the tail-pipe exhaust emissions obtained by use of modern engine technology. Particle emissions from the combustion of biomass were characterized in terms of their elemental composition and particle formation mechanisms. List of papers in this dissertation Paper I: Aerosol particle elemental size distributions during the Arctic Ocean expedition in the summer of 2001. Paper II: Summer high Arctic aerosol particles classified using Transmission Electron Microscopy. Paper III: Traffic-generated emissions of ultra fine particles from the road surface-tire interface. Paper IV: Particle emissions from district heating units operation on three commonly used biofuels. Paper V: Laboratory and field test of a method for high-temperature characterization of fly ash and fly ash precursors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy