SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ghavami S) srt2:(2010-2014)"

Sökning: WFRF:(Ghavami S) > (2010-2014)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
2.
  • Alavian, S.M., et al. (författare)
  • Virus-triggered autophagy in viral hepatitis - possible novel strategies for drug development
  • 2011
  • Ingår i: Journal of Viral Hepatitis. - : Blackwell Publishing. - 1352-0504 .- 1365-2893. ; 18:12, s. 821-830
  • Forskningsöversikt (refereegranskat)abstract
    • . Autophagy is a very tightly regulated process that is important in many cellular processes including development, differentiation, survival and homoeostasis. The importance of this process has already been proven in numerous common diseases such as cancer and neurodegenerative disorders. Emerging data indicate that autophagy plays an important role in some liver diseases including liver injury induced by ischaemia reperfusion and alpha-1 antitrypsin Z allele-dependent liver disease. Autophagy may also occur in viral infection, and it may play a crucial role in antimicrobial host defence against pathogens, while supporting cellular homoeostasis processes. Here, the latest findings on the role of autophagy in viral hepatitis B and C infection, which are both serious health threats, will be reviewed.
  •  
3.
  • Ghavami, Saeid, et al. (författare)
  • Statin-triggered cell death in primary human lung mesenchyrnal cells involves p53-PUMA and release of Smac and Omi but not cytochrome c
  • 2010
  • Ingår i: Biochimica et Biophysica Acta. - : Elsevier. - 0006-3002 .- 1878-2434. ; 1803:4, s. 452-467
  • Tidskriftsartikel (refereegranskat)abstract
    • Statins inhibit 3-hydroxy-3-methyl-glutarylcoenzyme CoA (HMG-CoA) reductase, the proximal enzyme forcholesterol biosynthesis. They exhibit pleiotropic effects and are linked to health benefits for diseasesincluding cancer and lung disease. Understanding their mechanism of action could point to new therapies,thus we investigated the response of primary cultured human airway mesenchymal cells, which play aneffector role in asthma and chronic obstructive lung disease (COPD), to simvastatin exposure. Simvastatininduced apoptosis involving caspase-9, -3 and -7, but not caspase-8 in airway smooth muscle cells andfibroblasts. HMG-CoA inhibition did not alter cellular cholesterol content but did abrogate de novocholesterol synthesis. Pro-apoptotic effects were prevented by exogenous mevalonate, geranylgeranylpyrophosphate and farnesyl pyrophosphate, downstream products of HMG-CoA. Simvastatin increasedexpression of Bax, oligomerization of Bax and Bak, and expression of BH3-only p53-dependent genes, PUMAand NOXA. Inhibition of p53 and silencing of p53 unregulated modulator of apoptosis (PUMA) expressionpartly counteracted simvastatin-induced cell death, suggesting a role for p53-independent mechanisms.Simvastatin did not induce mitochondrial release of cytochrome c, but did promote release of inhibitor ofapoptosis (IAP) proteins, Smac and Omi. Simvastatin also inhibited mitochondrial fission with the loss ofmitochondrial Drp1, an essential component of mitochondrial fission machinery. Thus, simvastatin activatesnovel apoptosis pathways in lung mesenchymal cells involving p53, IAP inhibitor release, and disruption ofmitochondrial fission.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy