SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Giacalone G.) srt2:(2020-2024)"

Sökning: WFRF:(Giacalone G.) > (2020-2024)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Murari, A., et al. (författare)
  • A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
  • 2024
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 15:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Tuson, A., et al. (författare)
  • TESS and CHEOPS discover two warm sub-Neptunes transiting the bright K-dwarf HD 15906
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 523:2, s. 3090-3118
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery of two warm sub-Neptunes transiting the bright (G = 9.5 mag) K-dwarf HD 15906 (TOI 461, TIC 4646810). This star was observed by the Transiting Exoplanet Survey Satellite (TESS) in sectors 4 and 31, revealing two small transiting planets. The inner planet, HD 15906 b, was detected with an unambiguous period but the outer planet, HD 15906 c, showed only two transits separated by ∼ 734 d, leading to 36 possible values of its period. We performed follow-up observations with the CHaracterising ExOPlanet Satellite (CHEOPS) to confirm the true period of HD 15906 c and improve the radius precision of the two planets. From TESS, CHEOPS, and additional ground-based photometry, we find that HD 15906 b has a radius of 2.24 ± 0.08 R and a period of 10.924709 ± 0.000032 d, whilst HD 15906 c has a radius of 2.93+−000607 R and a period of 21.583298+−00000055000052 d. Assuming zero bond albedo and full day-night heat redistribution, the inner and outer planet have equilibrium temperatures of 668 ± 13 K and 532 ± 10 K, respectively. The HD 15906 system has become one of only six multiplanet systems with two warm (700 K) sub-Neptune sized planets transiting a bright star (G ≤ 10 mag). It is an excellent target for detailed characterization studies to constrain the composition of sub-Neptune planets and test theories of planet formation and evolution.
  •  
7.
  • Esparza-Borges, E., et al. (författare)
  • A hot sub-Neptune in the desert and a temperate super-Earth around faint M dwarfs Color validation of TOI-4479b and TOI-2081b
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 666
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We report the discovery and validation of two TESS exoplanets orbiting faint M dwarfs: TOI-4479b and TOI-2081b. Methods. We jointly analyzed space (TESS mission) and ground-based (MuSCAT2, MuSCAT3 and SINISTRO instruments) light curves using our multicolor photometry transit analysis pipeline. This allowed us to compute contamination limits for both candidates and validate them as planet-sized companions. Results. We found TOI-4479b to be a sub-Neptune-sized planet (R-p = 2.82(-0.63)(+0.65) R-circle plus) and TOI-2081b to be a super-Earth-sized planet (R-p = 2.04(-0.54)(+0.50) R-circle plus). Furthermore, we obtained that TOI-4479b, with a short orbital period of 1.15890(-0.00001)(+0.00002) days, lies within the Neptune desert and is in fact the largest nearly ultra-short period planet around an M dwarf known to date. Conclusions. These results make TOI-4479b rare among the currently known exoplanet population of M dwarf stars and an especially interesting target for spectroscopic follow-up and future studies of planet formation and evolution.
  •  
8.
  • Faraone, F. P., et al. (författare)
  • Distribution and natural history of Plutonium zwierleini (Chilopoda: Scolopendromorpha) in Sicily (Italy)
  • 2024
  • Ingår i: European Zoological Journal. - 2475-0263. ; 91:1, s. 305-317
  • Tidskriftsartikel (refereegranskat)abstract
    • Plutonium zwierleini is a large plutoniumid centipede of great evolutionary interest, occurring with isolated populations along the western Mediterranean area, from Spain to Italy. Due to its rarity and the extreme paucity of available records, P. zwierleini is among the least known Mediterranean chilopods, and scarce information is currently available on its ecology and natural history. Based on an extensive sampling effort carried out in Sicily between 2022 and 2023, we here provide additional occurrence localities for the species across Sicily, and new insights into its ecology. Overall, 29 novel Sicilian records of P. zwierleini, scattered across 21 localities, were collected thus increasing its known Sicilian distribution area by 117%, and the number of localities by 110%. The species was found in a wide range of habitats such as open areas, woods, buildings, and caves, characterizing Plutonium zwierleini as a habitat generalist, whose fine ecological preferenda need to be further explored. Moreover, to explore the diet and behaviour of the species, some specimens were kept in captivity. The captive individuals fed mostly on dead or poorly mobile soft-bodied prey and inert food, without ever displaying predatory behaviour; this suggests that, contrarily to what is currently assumed, P. zwierleini might be a scavenger rather than a predator. The potential distribution of Plutonium zwierleini in Sicily was inferred based on georeferenced occurrence records and climatic variables. The implemented MaxEnt model forecasts the possible occurrence of P. zwierleini on the whole island, with the single exception of its south-easternmost part, possibly due to the local pattern of precipitation seasonality. We hope that the present work might pave the way for further surveys aimed at a better understanding of the ecology of Plutonium zwierleini and the collection of new data in the other regions inhabited by this secretive species.
  •  
9.
  • Lillo-Box, J., et al. (författare)
  • TOI-969: a late-K dwarf with a hot mini-Neptune in the desert and an eccentric cold Jupiter
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 669
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The current architecture of a given multi-planetary system is a key fingerprint of its past formation and dynamical evolution history. Long-term follow-up observations are key to complete their picture. Aims. In this paper, we focus on the confirmation and characterization of the components of the TOI-969 planetary system, where TESS detected a Neptune-size planet candidate in a very close-in orbit around a late K-dwarf star. Methods. We use a set of precise radial velocity observations from HARPS, PFS, and CORALIE instruments covering more than two years in combination with the TESS photometric light curve and other ground-based follow-up observations to confirm and characterize the components of this planetary system. Results. We find that TOI-969 b is a transiting close-in (Pb ∼ 1.82 days) mini-Neptune planet (Formula Presented), placing it on the lower boundary of the hot-Neptune desert (Teq,b = 941 ± 31 K). The analysis of its internal structure shows that TOI-969 b is a volatile-rich planet, suggesting it underwent an inward migration. The radial velocity model also favors the presence of a second massive body in the system, TOI-969 c, with a long period of (Formula Presented) days, a minimum mass of (Formula Presented), and a highly eccentric orbit of (Formula Presented). Conclusions. The TOI-969 planetary system is one of the few around K-dwarfs known to have this extended configuration going from a very close-in planet to a wide-separation gaseous giant. TOI-969 b has a transmission spectroscopy metric of 93 and orbits a moderately bright (G = 11.3 mag) star, making it an excellent target for atmospheric studies. The architecture of this planetary system can also provide valuable information about migration and formation of planetary systems.
  •  
10.
  • Mallorquin, M., et al. (författare)
  • TOI-1801 b: A temperate mini-Neptune around a young M0.5 dwarf
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 680
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery, mass, and radius determination of TOI-1801 b, a temperate mini-Neptune around a young M dwarf. TOI-1801 b was observed in TESS sectors 22 and 49, and the alert that this was a TESS planet candidate with a period of 21.3 days went out in April 2020. However, ground-based follow-up observations, including seeing-limited photometry in and outside transit together with precise radial velocity (RV) measurements with CARMENES and HIRES revealed that the true period of the planet is 10.6 days. These observations also allowed us to retrieve a mass of 5.74 +/- 1.46 M-circle plus, which together with a radius of 2.08 +/- 0.12 R-circle plus, means that TOI-1801 b is most probably composed of water and rock, with an upper limit of 2% by mass of H-2 in its atmosphere. The stellar rotation period of 16 days is readily detectable in our RV time series and in the ground-based photometry. We derived a likely age of 600-800 Myr for the parent star TOI-1801, which means that TOI-1801 b is the least massive young mini-Neptune with precise mass and radius determinations. Our results suggest that if TOI-1801 b had a larger atmosphere in the past, it must have been removed by some evolutionary mechanism on timescales shorter than 1 Gyr.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy