SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Glémin Sylvain) srt2:(2010-2014)"

Sökning: WFRF:(Glémin Sylvain) > (2010-2014)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ratnakumar, Abhirami, et al. (författare)
  • Detecting positive selection within genomes : the problem of biased gene conversion
  • 2010
  • Ingår i: Philosophical Transactions of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8436 .- 1471-2970. ; 365:1552, s. 2571-2580
  • Tidskriftsartikel (refereegranskat)abstract
    • The identification of loci influenced by positive selection is a major goal of evolutionary genetics. A popular approach is to perform scans of alignments on a genome-wide scale in order to find regions evolving at accelerated rates on a particular branch of a phylogenetic tree. However, positive selection is not the only process that can lead to accelerated evolution. Notably, GC-biased gene conversion (gBGC) is a recombination-associated process that results in the biased fixation of G and C nucleotides. This process can potentially generate bursts of nucleotide substitutions within hotspots of meiotic recombination. Here, we analyse the results of a scan for positive selection on genes on branches across the primate phylogeny. We show that genes identified as targets of positive selection have a significant tendency to exhibit the genomic signature of gBGC. Using a maximum-likelihood framework, we estimate that more than 20 per cent of cases of significantly elevated non-synonymous to synonymous substitution rates ratio (d(N)/d(S)), particularly in shorter branches, could be due to gBGC. We demonstrate that in some cases, gBGC can lead to very high d(N)/d(S) (more than 2). Our results indicate that gBGC significantly affects the evolution of coding sequences in primates, often leading to patterns of evolution that can be mistaken for positive selection.
  •  
2.
  • Corcoran, Pádraic (författare)
  • Neurospora tetrasperma from Natural Populations : Toward the Population Genomics of a Model Fungus
  • 2013
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The study of DNA sequence variation is a powerful approach to study genome evolution, and to reconstruct evolutionary histories of species. In this thesis, I have studied genetic variation in the fungus Neurospora tetrasperma and other closely related Neurospora species. I have focused on N. tetrasperma in my research because it has large regions of suppressed recombination on its mating-type chromosomes, had undergone a recent change in reproductive mode and is composed of multiple reproductively isolated lineages. Using DNA sequence data from a large sample set representing multiple species of Neurospora I estimated that N. tetrasperma evolved ~1 million years ago and that it is composed of at least 10 lineages. My analysis of the type of asexual spores produced using newly described N. tetrasperma populations in Britain revealed that lineages differ considerably in life history characteristics that may have consequences for their evolution. A comparative genomic analysis using three genomes of N. tetrasperma and the genome of N. crassa revealed that the mat a chromosomes in the lineages examine have been introgressed from other Neurospora species and that this introgression has reduced levels of molecular degeneration on the mating-type chromosomes. Finally, I generated a population genomic dataset composed of 92 N. tetrasperma genomes and two genomes of other Neurospora species. Analysis of these genomes revealed that all strains of N. tetrasperma have large regions of suppressed recombination on their mating-type chromosomes ranging from 69-84% of the chromosome and that the extent of divergence between mating-type chromosomes within lineages varies greatly (from 1.3 to 3.2%). I concluded that the source of this great divergence mating-type chromosome is large-scale introgression from other Neurospora species, and that these introgressed tracts have become fixed within N. tetrasperma lineages. I also discovered that genes within non-recombining introgressed regions of the mating-type chromosome have severely reduced levels of genetic variation as compared to the autosomes, and exhibit signatures of reduced molecular degeneration. My analysis of variation in coding regions revealed that positive selection on the introgressed regions has resulted in the removal of deleterious mutations and is responsible for the reductions in molecular degeneration observed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy