SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gloyn Anna L.) srt2:(2010-2014)"

Sökning: WFRF:(Gloyn Anna L.) > (2010-2014)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Palmer, Nicholette D, et al. (författare)
  • A genome-wide association search for type 2 diabetes genes in African Americans.
  • 2012
  • Ingår i: PloS one. - San Francisco : Public Library of Science (PLoS). - 1932-6203. ; 7:1, s. e29202-
  • Tidskriftsartikel (refereegranskat)abstract
    • African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations.
  •  
2.
  • Voight, Benjamin F., et al. (författare)
  • Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis
  • 2010
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:7, s. 579-589
  • Tidskriftsartikel (refereegranskat)abstract
    • By combining genome-wide association data from 8,130 individuals with type 2 diabetes (T2D) and 38,987 controls of European descent and following up previously unidentified meta-analysis signals in a further 34,412 cases and 59,925 controls, we identified 12 new T2D association signals with combined P < 5 x 10(-8). These include a second independent signal at the KCNQ1 locus; the first report, to our knowledge, of an X-chromosomal association (near DUSP9); and a further instance of overlap between loci implicated in monogenic and multifactorial forms of diabetes (at HNF1A). The identified loci affect both beta-cell function and insulin action, and, overall, T2D association signals show evidence of enrichment for genes involved in cell cycle regulation. We also show that a high proportion of T2D susceptibility loci harbor independent association signals influencing apparently unrelated complex traits.
  •  
3.
  • Rosengren, Anders, et al. (författare)
  • Reduced Insulin Exocytosis in Human Pancreatic β-cells With Gene Variants Linked to Type 2 Diabetes.
  • 2012
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 61:7, s. 1726-1733
  • Tidskriftsartikel (refereegranskat)abstract
    • The majority of genetic risk variants for type 2 diabetes (T2D) affect insulin secretion, but the mechanisms through which they influence pancreatic islet function remain largely unknown. We functionally characterized human islets to determine secretory, biophysical, and ultrastructural features in relation to genetic risk profiles in diabetic and nondiabetic donors. Islets from donors with T2D exhibited impaired insulin secretion, which was more pronounced in lean than obese diabetic donors. We assessed the impact of 14 disease susceptibility variants on measures of glucose sensing, exocytosis, and structure. Variants near TCF7L2 and ADRA2A were associated with reduced glucose-induced insulin secretion, whereas susceptibility variants near ADRA2A, KCNJ11, KCNQ1, and TCF7L2 were associated with reduced depolarization-evoked insulin exocytosis. KCNQ1, ADRA2A, KCNJ11, HHEX/IDE, and SLC2A2 variants affected granule docking. We combined our results to create a novel genetic risk score for β-cell dysfunction that includes aberrant granule docking, decreased Ca(2+) sensitivity of exocytosis, and reduced insulin release. Individuals with a high risk score displayed an impaired response to intravenous glucose and deteriorating insulin secretion over time. Our results underscore the importance of defects in β-cell exocytosis in T2D and demonstrate the potential of cellular phenotypic characterization in the elucidation of complex genetic disorders.
  •  
4.
  • Tattikota, Sudhir G, et al. (författare)
  • Argonaute2 Mediates Compensatory Expansion of the Pancreatic β Cell.
  • 2014
  • Ingår i: Cell Metabolism. - : Elsevier BV. - 1550-4131. ; 19:1, s. 122-134
  • Tidskriftsartikel (refereegranskat)abstract
    • Pancreatic β cells adapt to compensate for increased metabolic demand during insulin resistance. Although the microRNA pathway has an essential role in β cell proliferation, the extent of its contribution is unclear. Here, we report that miR-184 is silenced in the pancreatic islets of insulin-resistant mouse models and type 2 diabetic human subjects. Reduction of miR-184 promotes the expression of its target Argonaute2 (Ago2), a component of the microRNA-induced silencing complex. Moreover, restoration of miR-184 in leptin-deficient ob/ob mice decreased Ago2 and prevented compensatory β cell expansion. Loss of Ago2 during insulin resistance blocked β cell growth and relieved the regulation of miR-375-targeted genes, including the growth suppressor Cadm1. Lastly, administration of a ketogenic diet to ob/ob mice rescued insulin sensitivity and miR-184 expression and restored Ago2 and β cell mass. This study identifies the targeting of Ago2 by miR-184 as an essential component of the compensatory response to regulate proliferation according to insulin sensitivity.
  •  
5.
  • Thanabalasingham, Gaya, et al. (författare)
  • Mutations in HNF1A Result in Marked Alterations of Plasma Glycan Profile
  • 2013
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 62:4, s. 1329-1337
  • Tidskriftsartikel (refereegranskat)abstract
    • A recent genome-wide association study identified hepatocyte nuclear factor 1-alpha (HNF1A) as a key regulator of fucosylation. We hypothesized that loss-of-function HNF1A mutations causal for maturity-onset diabetes of the young (MOD?) would display altered fucosylation of N-linked glycans on plasma proteins and that glycan biomarkers could improve the efficiency of a diagnosis of HNF1A-MODY. In a pilot comparison of 33 subjects with HNF1A-MODY and 41 subjects with type 2 diabetes, 15 of 29 glycan measurements differed between the two groups. The DG9-glycan index, which is the ratio of fucosylated to nonfucosylated triantennary glycans, provided optimum discrimination in the pilot study and was examined further among additional subjects with HNF1A-MODY (n = 188), glucokinase (GCE)-MODY (n = 118), hepatocyte nuclear factor 4-alpha (HNF4A)-MODY (n = 40), type 1 diabetes (n = 98), type 2 diabetes (n = 167), and nondiabetic controls (n = 98). The DG9-glycan index was markedly lower in HNF1A-MODY than in controls or other diabetes subtypes, offered good discrimination between HNF1A-MODY and both type 1 and type 2 diabetes (C statistic >= 0.90), and enabled us to detect three previously undetected HNF1A mutations in patients with diabetes. In conclusion, glycan profiles are altered substantially in HNF1A-MODY, and the DG9-glycan index has potential clinical value as a diagnostic biomarker of HNF1A dysfunction.
  •  
6.
  • Travers, Mary E., et al. (författare)
  • Insights Into the Molecular Mechanism for Type 2 Diabetes Susceptibility at the KCNQ1 Locus From Temporal Changes in Imprinting Status in Human Islets
  • 2013
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 62:3, s. 987-992
  • Tidskriftsartikel (refereegranskat)abstract
    • The molecular basis of type 2 diabetes predisposition at most established susceptibility loci remains poorly understood. KCNQ1 maps within the 11p15.5 imprinted domain, a region with an established role in congenital growth phenotypes. Variants intronic to KCNQ1 influence diabetes susceptibility when maternally inherited. By use of quantitative PCR and pyrosequencing of human adult islet and fetal pancreas samples, we investigated the imprinting status of regional transcripts and aimed to determine whether type 2 diabetes risk alleles influence regional DNA methylation and gene expression. The results demonstrate that gene expression patterns differ by developmental stage. CDKN1C showed monoallelic expression in both adult and fetal tissue, whereas PHLDA2, SLC22A18, and SLC22A18AS were biallelically expressed in both tissues. Temporal changes in imprinting were observed for KCNQ1 and KCNQ10T1, with monoallelic expression in fetal tissues and biallelic expression in adult samples. Genotype at the type 2 diabetes risk variant rs2237895 influenced methylation levels of regulatory sequence in fetal pancreas but without demonstrable effects on gene expression. We demonstrate that CDKN1C, KCNQ1, and KCNQ10T1 are most likely to mediate diabetes susceptibility at the KCNQ1 locus and identify temporal differences in imprinting status and methylation effects, suggesting that diabetes risk effects may be mediated in early development. Diabetes 62:987-992, 2013
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy