SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Goel Sneha) srt2:(2017)"

Sökning: WFRF:(Goel Sneha) > (2017)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Awasthi, Shikha, et al. (författare)
  • Multi-Length Scale Tribology of Electrophoretically Deposited Nickel-Diamond Coatings
  • 2017
  • Ingår i: JOM. - : Springer Science and Business Media LLC. - 1047-4838 .- 1543-1851. ; 69:2, s. 227-235
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrophoretically deposited (EPD) nickel and its composite coatings are widely used to enhance the life span of continuous ingot casting molds in the steel, aerospace and automotive industries. This article reports the effect of different concentrations of diamond particles (2.5–10 g/L) on the wear mechanism of EPD Ni. The distribution of diamond particles in the Ni matrix was observed using Voronoi tessellation. Variation in COF was observed by a fretting wear test to be 0.51 ± 0.07 for Ni, which decreases to 0.35 ± 0.03 for the Ni-diamond coatings. The wear volume of the coatings with 7.5 g/L concentration of diamond was observed to be a minimum (0.051 ± 0.02 × 10−3 mm3) compared with other composite coatings. Further, the micro-scratch testing of the coatings also exhibited a reduced COF (0.03–0.12) for 7.5 g/L diamond concentration compared with Ni (0.08–0.13). Higher wear resistance of the diamond-added coatings (optimum 7.5 g/L concentration) is due to the balance between the dispersion strengthening mechanism and the enhancement of the load-bearing capacity due to the incorporation of diamond particles. Thus, these composites can be used for applications in automotive and aerospace industries. © 2016 The Minerals, Metals & Materials Society
  •  
2.
  • Goel, Sneha, 1993-, et al. (författare)
  • Axial suspension plasma spraying of Al2O3 coatings for superior tribological properties
  • 2017
  • Ingår i: Surface & Coatings Technology. - : ELSEVIER SCIENCE SA. - 0257-8972 .- 1879-3347. ; 315, s. 80-87
  • Tidskriftsartikel (refereegranskat)abstract
    • Suspension plasma spray is a relatively new thermal spray technique which enables feeding of fine powder to produce advanced coatings for varied applications. This work investigates the difference in structure and performance of Al2O3 coatings manufactured using conventional micron-sized powder feedstock and a suspension of sub-micron to few micron sized powder. Axial injection was implemented for deposition in both cases. The effect of feedstock size and processing on the tribological performance of the two coatings was of specific interest. The coatings were characterized by Optical and Scanning Electron Microscopy, micro-hardness and scratch resistance testing, and their dry sliding wear performance evaluated. The suspension sprayed coatings yielded significantly higher scratch resistance, lower friction coefficient and reduced wear rate compared to conventional coatings. The improved tribological behaviour of the former is attributable to finer porosity, smaller splat sizes, and improved interlamellar bonding.
  •  
3.
  • Goel, Sneha, 1993-, et al. (författare)
  • Hybrid powder-suspension Al2O3-ZrO2 coatings by axial plasma spraying : Processing, characteristics & tribological behaviour
  • 2017
  • Ingår i: Proceedings of the International Thermal Spray Conference & Exposition. - New York : Curran Associates, Inc. - 9781510858220 ; , s. 374-379
  • Konferensbidrag (refereegranskat)abstract
    • The ability of suspension plasma spraying (SPS) to overcome difficulties associated with feeding of fine (submicron or nano-sized) powders and achieve more refined microstructures than possible in atmospheric plasma spraying (APS) is well established. In recent times, the use of axial injection plasma spray systems has yielded substantial enhancement in deposition rates/efficiencies due to improved thermal exchange between the plasma plume and injected feedstock. The present paper describes utilization of both the above advances in plasma spraying to create various function-dependent coating architectures through simultaneous and/or sequential spraying of hybrid powder-suspension feedstock. A specific variant of such hybrid axial plasma spraying that enables deposition of composite coatings by simultaneous injection of a powder and a suspension is discussed in particular detail. Results obtained using an Al2O3-ZrO2 material system as a case study reveal that composite coatings combining the micron-size features arising from the spray-grade Al2O3 powder and submicron or nano-sized features attributable to the ZrO2 suspension can be conveniently realized. The surface morphology, microstructure, and composition of these coatings, as well as their tribological behaviour determined using scratch and ball-on-disc tests, are presented herein. The utility of this method to develop a wide array of composite coatings is also discussed. 
  •  
4.
  •  
5.
  • Kanhed, Satish, et al. (författare)
  • Porosity distribution affecting mechanical and biological behaviour of hydroxyapatite bioceramic composites
  • 2017
  • Ingår i: Ceramics International. - : Elsevier BV. - 0272-8842 .- 1873-3956. ; 43:13, s. 10442-10449
  • Tidskriftsartikel (refereegranskat)abstract
    • The present work aims to the study of developing porosity in hydroxyapatite (HAp) scaffold by using graphite porogen (with 0-30 vol%) followed by engineering the changes achieved by conventional- (CS) and microwave sintering (MS) techniques. The generated porosity was controlled between similar to 6-27% as the porogen concentration increases in HAp scaffold. Voronoi tessellation was utilized in order to evaluate the distribution of pores. The enhanced mechanical properties including fracture toughness (0.83 MPa m(1/2)), fracture strength (7.5 MPa), and hardness (183.7 VHN) were observed for microwave sintered HAp scaffold with 8% porosity. The fitting between porosity and fracture strength elicited that microwave sintered HAp with 8% porosity provides maximum crack-propagation resistance while restricting grain size (similar to 0.23 mu m) and eliciting high extent of sintering (similar to 1.34) because of their rapid heating rates. The cell viability (MTT assay) and cell culture confirm the cytocompatibility of porous HAp for application as bone implant that need accelerated replacement of bone tissues.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy