SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Goel Sneha) srt2:(2021)"

Sökning: WFRF:(Goel Sneha) > (2021)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ganvir, Ashish, 1991-, et al. (författare)
  • Tribological performance assessment of Al2O3-YSZ composite coatings deposited by hybrid powder-suspension plasma spraying
  • 2021
  • Ingår i: Surface and Coatings Technology. - : Elsevier BV. - 0257-8972 .- 1879-3347. ; 409
  • Tidskriftsartikel (refereegranskat)abstract
    • The advent of high-throughput plasma spray systems that allow axial feeding encourages the study of using liquid feedstock for various next-generation functional applications. The current study explores the benefit of such a plasma spray system to deposit hybrid powder-suspension Al2O3-YSZ ceramic matrix composite (CMC) coatings for tribological applications. The tribological performance of the hybrid processed CMC coatings was assessed using scratch, ball-on-plate wear and erosion tests and compared with that of monolithic powder-derived Al2O3 coatings. As-deposited and tribo-tested coatings were characterized using Scanning Electron Microscopy, X-ray Diffraction and Energy Dispersive Spectroscopy to analyse their microstructure and phase constitution. The results showed that the tribological performance of the hybrid powder-suspension Al2O3-YSZ CMC coating was significantly improved by enhancing the wear resistance under scratch, dry sliding ball-on-plate and erosion tests as compared to the conventional APS deposited monolithic Al2O3 coating. About 36% decrease in the dry sliding ball-on-plate specific wear rate and up to 50% decrease in the erosion wear rate was noted in the hybrid powder-suspension Al2O3-YSZ CMC coating as compared to the conventional APS deposited monolithic Al2O3 coating. The study concludes that the hybrid powder-suspension route can create CMC coatings with unique multi-length scale microstructures which can be attractive for combining different tribological attributes in the same coating system.
  •  
2.
  • Goel, Sneha, 1993-, et al. (författare)
  • Microstructure evolution and mechanical response-based shortening of thermal post-treatment for electron beam melting (EBM) produced Alloy 718
  • 2021
  • Ingår i: Materials Science and Engineering. - : Elsevier BV. - 0921-5093 .- 1873-4936. ; 820
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron beam melting (EBM) produced Alloy 718 was subjected to thermal post-treatment involving hot isostatic pressing (HIPing) and heat treatment (HT). Subjecting the material to HIPing at 1120 °C led to significant densification. Study of microstructure evolution during HT (comprising of solution treatment and aging) showed possibility of significantly shortening the HT duration, particularly the time for two-step aging from the standard (8 h + 8 h) long cycle to possibly a shortened (4 h + 1 h) cycle. Another approach for shortening the post-treatment cycle by integrating the HIPing with HT inside the HIP vessel was also successfully implemented. The above observations were further substantiated by tensile response of the material subjected to the varied post-treatment cycles; out of all the post-treatments steps, tensile behaviour was observed to be mainly affected by the aging treatment. Further prospects for shortening the post-treatment protocol are also described, such as shortening of HIPing duration for the typical 4 h to 1 h cycle as well as possible elimination of solution treatment step from the entire post-treatment protocol specifically when prior HIPing is performed. Heat treatment with prior HIPing was found to be crucial for improving fatigue life, because subjecting EBM Alloy 718 to only HT, irrespective of the short or standard long protocol, rendered inferior fatigue response.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy