SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Goldberg M) srt2:(1995-1999)"

Sökning: WFRF:(Goldberg M) > (1995-1999)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aleksandrov, D., et al. (författare)
  • Invariant mass spectrum and alpha-n correlation function studied in the fragmentation of He-6 on a carbon target
  • 1998
  • Ingår i: Nuclear Physics A. - 0375-9474. ; 633:2, s. 234-246
  • Tidskriftsartikel (refereegranskat)abstract
    • Momentum distributions and invariant mass spectra from the breakup of He-6 ions with an energy of 240 MeV/u interacting with a carbon target have been studied. The data were used to extract information about the reaction mechanism which is influenced by the structure of He-6. It is found that the dominant reaction mechanism is a two-step process: knock out of one neutron followed by the decay of the He-5 resonance. The shape of the (alpha+n) two-body invariant mass spectrum is interpreted as mainly reflecting the 5He ground state which is a J(pi) = 3/2(-) resonance. However, no evidence for correlations between cu particles and neutrons is observed in the momentum widths of the distributions. It is demonstrated that a combined analysis of the two-body invariant mass spectrum and an appropriate correlation function may be used to determine the properties of the intermediate resonance. (C) 1998 Elsevier Science B.V.
  •  
2.
  • Chulkov, L. V., et al. (författare)
  • Large spin alignment of the unbound He-5 fragment after fragmentation of 240 MeV/nucleon He-6
  • 1997
  • Ingår i: Physical Review Letters. - 1079-7114 .- 0031-9007. ; 79:2, s. 201-204
  • Tidskriftsartikel (refereegranskat)abstract
    • Peripheral fragmentation of a 240 MeV/nucleon beam of the halo nucleus He-6 incident on carbon target has been studied in a kinematically complete experiment. It is found that one-neutron stripping to the unbound nucleus He-5 is the dominant fragmentation mechanism and that it leads to a spin alignment of He-5 in a plane perpendicular to the He-5 momentum vector. This is expected to be a common feature for all neutron halo nuclei.
  •  
3.
  • Axelsson, L., et al. (författare)
  • Study of the unbound nucleus 11N by elastic resonance scattering
  • 1996
  • Ingår i: Physical Review C (Nuclear Physics). - 0556-2813 .- 2469-9985 .- 2469-9993. ; 54:4, s. 1511-1514
  • Tidskriftsartikel (refereegranskat)abstract
    • Resonances in the unbound nucleus 11N have been studied, using the resonance scattering reaction 10C+p. The data give evidence for three states above the 10C+p threshold with energies 1.30, 2.04, and 3.72 MeV. These states can be interpreted, in a potential-model analysis, as the ground state and the first two excited states with spin-parity 1 / 2+, 1 / 2-, and 5 / 2+ arising from the shell-model orbitals 1s1 / 2, 0p1 / 2, and 0d5 / 2. A narrow state superposed on a broad structure found at higher energy could be interpreted as the mirror state of the 3 / 2- in 11Be shifted down in energy. This shift would suggest a large radius of the potential.
  •  
4.
  • Bruland, O, et al. (författare)
  • Accurate determination of the number of CAG repeats in the Huntington disease gene using a sequence-specific internal DNA standard.
  • 1999
  • Ingår i: Clinical Genetics. - 0009-9163 .- 1399-0004. ; 55:3, s. 198-202
  • Tidskriftsartikel (refereegranskat)abstract
    • We have developed a sequence-specific internal DNA size standard for the accurate determination of the number of CAG repeats in the Huntington disease (HD) gene by cloning key fragments (between 15 and 64 CAG repeats) of the HD gene. These fragments, pooled to produce a sequence-specific DNA ladder, enabled us to observe the true number of CAG repeats directly, with no need for calculations. Comparison of the calculated numbers of CAG repeats in the HD gene using this sequence-specific DNA standard with a commercially available standard (GENESCAN-500 TAMRA) showed that the latter underestimated the number of CAG repeats by three when analyzed by capillary electrophoresis on the ABI 310 Genetic Analyzer (POP4 polymer). In contrast, the use of the same standard overestimated the number of CAG repeats by one when the samples were analyzed by denaturing polyacrylamide electrophoresis on ABI 377 DNA Sequencer (6% denaturing polyacrylamide gel). This suggests that our sequence-specific standard provides greater accuracy for the determination of the true number of CAG repeats in the HD gene than commercially available standards. The sequence-specific standard can be radioactively labeled and successfully replace conventional DNA size standards when analyzing polymerase chain reaction (PCR)-amplified HD alleles by denaturing polyacrylamide electrophoresis.
  •  
5.
  • Chong, S S, et al. (författare)
  • Contribution of DNA sequence and CAG size to mutation frequencies of intermediate alleles for Huntington disease : evidence from single sperm analyses.
  • 1997
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 6:2, s. 301-9
  • Tidskriftsartikel (refereegranskat)abstract
    • New mutations for Huntington disease (HD) arise from intermediate alleles (IAs) with between 29 and 35 CAG repeats that expand on transmission through the paternal germline to 36 CAGs or greater. Using single sperm analysis, we have assessed CAG mutation frequencies for four IAs in families with sporadic HD (IANM) and IAs ascertained from the general population (IAGP) by analyzing 1161 single sperm from three persons. We show that IANM are more unstable than IAGP with identical size and sequence. Furthermore, comparison of different sized IAs and IAs with different sequences between the CAG and the adjacent CCG tracts indicates that DNA sequence is a major influence on CAG stability. These studies provide estimates of the likelihood of expansion of IANM and IAGP to > or = 36 CAG repeats for these individuals. For an IA with a CAG of 35 in this family with sporadic HD, the likelihood for siblings to inherit a recurrent mutation > or = 36 CAG is approximately 10%. For IAGP of a similar size, the risk of inheriting an expanded allele of > or = 36 CAG through the paternal germline is approximately 6%. These risk estimates are higher than previously reported and provide additional information for counselling in these families. Further studies on persons with IAs will be needed to determine whether these results can be generalized to other families.
  •  
6.
  • Goellner, G M, et al. (författare)
  • Different mechanisms underlie DNA instability in Huntington disease and colorectal cancer.
  • 1997
  • Ingår i: American Journal of Human Genetics. - 0002-9297 .- 1537-6605. ; 60:4, s. 879-90
  • Tidskriftsartikel (refereegranskat)abstract
    • Two recent lines of evidence raise the possibility that instability in germ-line or somatic cells arises by a common mechanism that involves defective mismatch repair. Mutations in mismatch-repair proteins are known to cause instability in hereditary nonpolyposis colorectal cancer, instability that is physically similar to germ-line instability observed in Huntington disease (HD). Furthermore, both germ-line and somatic-cell instability are likely to be mitotic defects, the former occurring early in embryogenesis. To test the hypothesis that defective repair is a common prerequisite for instability, we have utilized two disease groups that represent different instability "conditions." Germ-line instability within simple tandem repeats (STR) at 10 loci in 29 HD families were compared with somatic instability at the same loci in 26 colon cancer (CC) patients with identified or suspected defects in mismatch-repair enzymes. HD is known to be caused by expansion within the CAG repeat of the locus, but the extent or pattern of STR instability outside this region has not been examined systematically. We find a distinctly different pattern of STR mutation in the two disease groups, suggesting different mechanisms. Instability in HD is generally confined to a single locus, whereas instability is widespread for the same loci in CC. Our data do not support a causative role for defective mismatch-repair enzymes in instability associated with HD; rather, our data are consistent with a model in which DNA structure may inhibit normal mismatch repair at the expansion site.
  •  
7.
  • Goldberg, Y P, et al. (författare)
  • Increased instability of intermediate alleles in families with sporadic Huntington disease compared to similar sized intermediate alleles in the general population.
  • 1995
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 4:10, s. 1911-8
  • Tidskriftsartikel (refereegranskat)abstract
    • We have directly compared intergenerational stability of intermediate alleles (IAs) derived from new mutation families (IANM) for Huntington disease (HD) with IAs in the general population (IAGP) which occur in approximately 1 in 50 persons. Analysis of meiotic events in blood and sperm reveals that IANM are significantly more unstable than IAGP despite similar size. However, for both IANM and IAGP CAG changes were small and risks for inheriting an expansion into the HD affected range were low. Sequence analysis reveals that the CAG tract is generally interrupted by a penultimate CAA in IAGP, IANM and alleles in the affected range. In one new mutation family, however, two A-->G mutations result in a pure CAG tract which is associated with very marked instability. These mutations alter the predicted DNA hairpin structure with a predicted increase in the likelihood of large expansion, supporting the model that hairpin loop formation plays an important role in trinucleotide instability.
  •  
8.
  • Almqvist, E, et al. (författare)
  • Ancestral differences in the distribution of the delta 2642 glutamic acid polymorphism is associated with varying CAG repeat lengths on normal chromosomes : insights into the genetic evolution of Huntington disease.
  • 1995
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 4:2, s. 207-14
  • Tidskriftsartikel (refereegranskat)abstract
    • This study addresses genetic factors associated with normal variation of the CAG repeat in the Huntington disease (HD) gene. To achieve this, we have studied patterns of variation of three trinucleotide repeats in the HD gene including the CAG and adjacent CCG repeats as well as a GAG polymorphism at residue 2642 (delta 2642). We have previously demonstrated that variation in the CCG repeat is associated with variation of the CAG repeat length on normal chromosomes. Here we show that differences in the GAG trinucleotide polymorphism at residue 2642 is also significantly correlated with CAG size on normal chromosomes. The B allele which is associated with higher CAG repeat lengths on normal chromosomes is markedly enriched on affected chromosomes. Furthermore, this glutamic acid polymorphism shows significant variation in different ancestries and is absent in chromosomes of Japanese, Black and Chinese descent. Haplotype analysis of both the CCG and delta 2642 polymorphisms have indicated that both are independently associated with differences in CAG length on normal chromosomes. These findings lead to a model for the genetic evolution of new mutations for HD preferentially occurring on normal chromosomes with higher CAG repeat lengths and a CCG repeat length of seven and/or a deletion of the glutamic acid residue at delta 2642. This study also provides additional evidence for genetic contributions to demographic differences in prevalence rates for HD.
  •  
9.
  • Kremer, B, et al. (författare)
  • Sex-dependent mechanisms for expansions and contractions of the CAG repeat on affected Huntington disease chromosomes.
  • 1995
  • Ingår i: American Journal of Human Genetics. - 0002-9297 .- 1537-6605. ; 57:2, s. 343-50
  • Tidskriftsartikel (refereegranskat)abstract
    • A total of 254 affected parent-child pairs with Huntington disease (HD) and 440 parent-child pairs with CAG size in the normal range were assessed to determine the nature and frequency of intergenerational CAG changes in the HD gene. Intergenerational CAG changes are extremely rare (3/440 [0.68%]) on normal chromosomes. In contrast, on HD chromosomes, changes in CAG size occur in approximately 70% of meioses on HD chromosomes, with expansions accounting for 73% of these changes. These intergenerational CAG changes make a significant but minor contribution to changes in age at onset (r2 = .19). The size of the CAG repeat influenced larger intergenerational expansions (> 7 CAG repeats), but the likelihood of smaller expansions or contractions was not influenced by CAG size. Large expansions (> 7 CAG repeats) occur almost exclusively through paternal transmission (0.96%; P < 10(-7)), while offspring of affected mothers are more likely to show no change (P = .01) or contractions in CAG size (P = .002). This study demonstrates that sex of the transmitting parent is the major determinant for CAG intergenerational changes in the HD gene. Similar paternal sex effects are seen in the evolution of new mutations for HD from intermediate alleles and for large expansions on affected chromosomes. Affected mothers almost never transmit a significantly expanded CAG repeat, despite the fact that many have similar large-sized alleles, compared with affected fathers. The sex-dependent effects of major expansion and contractions of the CAG repeat in the HD gene implicate different effects of gametogenesis, in males versus females, on intergenerational CAG repeat stability.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy